The $D$–module structure of $R[F]$–modules
HTML articles powered by AMS MathViewer
- by Manuel Blickle PDF
- Trans. Amer. Math. Soc. 355 (2003), 1647-1668 Request permission
Abstract:
Let $R$ be a regular ring, essentially of finite type over a perfect field $k$. An $R$–module $\mathcal {M}$ is called a unit $R[F]$–module if it comes equipped with an isomorphism $F^{e*} \mathcal {M} \to \mathcal {M}$, where $F$ denotes the Frobenius map on $\operatorname {Spec}R$, and $F^{e*}$ is the associated pullback functor. It is well known that $\mathcal {M}$ then carries a natural $D_R$–module structure. In this paper we investigate the relation between the unit $R[F]$–structure and the induced $D_R$–structure on $\mathcal {M}$. In particular, it is shown that if $k$ is algebraically closed and $\mathcal {M}$ is a simple finitely generated unit $R[F]$–module, then it is also simple as a $D_R$–module. An example showing the necessity of $k$ being algebraically closed is also given.References
- Pierre Berthelot, ${\scr D}$-modules arithmétiques. I. Opérateurs différentiels de niveau fini, Ann. Sci. École Norm. Sup. (4) 29 (1996), no. 2, 185–272 (French, with English summary). MR 1373933
- Pierre Berthelot, $\scr D$-modules arithmétiques. II. Descente par Frobenius, Mém. Soc. Math. Fr. (N.S.) 81 (2000), vi+136 (French, with English and French summaries). MR 1775613
- Manuel Blickle. The intersection homology ${D}$–module in finite characteristic. Ph.D. thesis, University of Michigan, 2001. arXiv:math.AG/0110244.
- Manuel Blickle. Tight closure and the intersection homology $D$–module in finite characteristic. in preparation, 2002.
- Rikard Bøgvad, Some results on $\scr D$-modules on Borel varieties in characteristic $p>0$, J. Algebra 173 (1995), no. 3, 638–667. MR 1327873, DOI 10.1006/jabr.1995.1107
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- J. Dixmier, Représentations irréductibles des algèbres de Lie nilpotentes, An. Acad. Brasil. Ci. 35 (1963), 491–519 (French). MR 182682
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- Mathew Emerton and Mark Kisin. Riemann–Hilbert correspondence for unit $\mathcal {F}$-crystals. I. in preperation, 1999.
- Mathew Emerton and Mark Kisin. Riemann–Hilbert correspondence for unit $\mathcal {F}$-crystals. II. in preperation, 2000.
- Burkhard Haastert, Über Differentialoperatoren und $\textbf {D}$-Moduln in positiver Charakteristik, Manuscripta Math. 58 (1987), no. 4, 385–415 (German, with English summary). MR 894862, DOI 10.1007/BF01277602
- Burkhard Haastert, On direct and inverse images of ${\scr D}$-modules in prime characteristic, Manuscripta Math. 62 (1988), no. 3, 341–354. MR 966631, DOI 10.1007/BF01246838
- Craig L. Huneke and Rodney Y. Sharp, Bass numbers of local cohomology modules, Trans. Amer. Math. Soc. 339 (1993), no. 2, 765–779. MR 1124167, DOI 10.1090/S0002-9947-1993-1124167-6
- Gennady Lyubeznik, Finiteness properties of local cohomology modules (an application of $D$-modules to commutative algebra), Invent. Math. 113 (1993), no. 1, 41–55. MR 1223223, DOI 10.1007/BF01244301
- Gennady Lyubeznik, $F$-modules: applications to local cohomology and $D$-modules in characteristic $p>0$, J. Reine Angew. Math. 491 (1997), 65–130. MR 1476089, DOI 10.1515/crll.1997.491.65
- Gennady Lyubeznik, Finiteness properties of local cohomology modules: a characteristic-free approach, J. Pure Appl. Algebra 151 (2000), no. 1, 43–50. MR 1770642, DOI 10.1016/S0022-4049(99)00080-8
- Gennady Lyubeznik, Injective dimension of $D$-modules: a characteristic-free approach, J. Pure Appl. Algebra 149 (2000), no. 2, 205–212. MR 1757731, DOI 10.1016/S0022-4049(98)00175-3
- Daniel Quillen, On the endomorphism ring of a simple module over an enveloping algebra, Proc. Amer. Math. Soc. 21 (1969), 171–172. MR 238892, DOI 10.1090/S0002-9939-1969-0238892-4
- S. P. Smith, Differential operators on the affine and projective lines in characteristic $p>0$, Séminaire d’algèbre Paul Dubreil et Marie-Paule Malliavin, 37ème année (Paris, 1985) Lecture Notes in Math., vol. 1220, Springer, Berlin, 1986, pp. 157–177. MR 926303, DOI 10.1007/BFb0099511
- S. P. Smith, The global homological dimension of the ring of differential operators on a nonsingular variety over a field of positive characteristic, J. Algebra 107 (1987), no. 1, 98–105. MR 883872, DOI 10.1016/0021-8693(87)90076-7
- Amnon Yekutieli, An explicit construction of the Grothendieck residue complex, Astérisque 208 (1992), 127 (English, with French summary). With an appendix by Pramathanath Sastry. MR 1213064
Additional Information
- Manuel Blickle
- Affiliation: Universität Essen, FB6 Mathematik, 45117 Essen, Germany
- Email: manuel.blickle@uni-essen.de
- Received by editor(s): May 10, 2002
- Received by editor(s) in revised form: July 10, 2002
- Published electronically: November 22, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1647-1668
- MSC (2000): Primary 13A35, 16S99, 16S32
- DOI: https://doi.org/10.1090/S0002-9947-02-03197-5
- MathSciNet review: 1946409