Lebesgue type decomposition of subspaces of Fourier-Stieltjes algebras
HTML articles powered by AMS MathViewer
- by E. Kaniuth, A. T. Lau and G. Schlichting
- Trans. Amer. Math. Soc. 355 (2003), 1467-1490
- DOI: https://doi.org/10.1090/S0002-9947-02-03203-8
- Published electronically: November 22, 2002
- PDF | Request permission
Abstract:
Let $G$ be a locally compact group and let $A(G)$ and $B(G)$ be the Fourier algebra and the Fourier-Stieltjes algebra of $G$, respectively. For any unitary representation $\pi$ of $G$, let $B_\pi (G)$ denote the $w^\ast$-closed linear subspace of $B(G)$ generated by all coefficient functions of $\pi$, and $B_\pi ^0(G)$ the closure of $B_\pi (G) \cap A_c(G)$, where $A_c(G)$ consists of all functions in $A(G)$ with compact support. In this paper we present descriptions of $B_\pi ^0(G)$ and its orthogonal complement $B_\pi ^s(G)$ in $B_\pi (G)$, generalizing a recent result of T. Miao. We show that for some classes of locally compact groups $G$, there is a dichotomy in the sense that for arbitrary $\pi$, either $B_\pi ^0(G) = \{0\}$ or $B_\pi ^0(G) = A(G)$. We also characterize functions in ${\mathcal B}_\pi ^0(G) = A_c(G) + B_\pi ^0(G)$ and study the question of whether ${\mathcal B}_\pi ^0(G) = A(G)$ implies that $\pi$ weakly contains the regular representation.References
- Michel Duflo, Opérateurs différentiels bi-invariants sur un groupe de Lie, Ann. Sci. École Norm. Sup. (4) 10 (1977), no. 2, 265–288 (French, with English summary). MR 444841
- Larry Baggett and Keith Taylor, Groups with completely reducible regular representation, Proc. Amer. Math. Soc. 72 (1978), no. 3, 593–600. MR 509261, DOI 10.1090/S0002-9939-1978-0509261-X
- Larry Baggett and Keith Taylor, A sufficient condition for the complete reducibility of the regular representation, J. Functional Analysis 34 (1979), no. 2, 250–265. MR 552704, DOI 10.1016/0022-1236(79)90033-8
- Alain Belanger and Brian E. Forrest, Geometric properties of coefficient function spaces determined by unitary representations of a locally compact group, J. Math. Anal. Appl. 193 (1995), no. 2, 390–405. MR 1338711, DOI 10.1006/jmaa.1995.1242
- M. E. B. Bekka, A. T. Lau, and G. Schlichting, On invariant subalgebras of the Fourier-Stieltjes algebra of a locally compact group, Math. Ann. 294 (1992), no. 3, 513–522. MR 1188135, DOI 10.1007/BF01934339
- David Bernier and Keith F. Taylor, Wavelets from square-integrable representations, SIAM J. Math. Anal. 27 (1996), no. 2, 594–608. MR 1377491, DOI 10.1137/S0036141093256265
- L. J. Bunce, The Dunford-Pettis property in the predual of a von Neumann algebra, Proc. Amer. Math. Soc. 116 (1992), no. 1, 99–100. MR 1091177, DOI 10.1090/S0002-9939-1992-1091177-1
- R. B. Burckel, Weakly almost periodic functions on semigroups, Gordon and Breach Science Publishers, New York-London-Paris, 1970. MR 0263963
- Cho-Ho Chu, A note on scattered $C^{\ast }$-algebras and the Radon-Nikodým property, J. London Math. Soc. (2) 24 (1981), no. 3, 533–536. MR 635884, DOI 10.1112/jlms/s2-24.3.533
- Lawrence J. Corwin and Frederick P. Greenleaf, Representations of nilpotent Lie groups and their applications. Part I, Cambridge Studies in Advanced Mathematics, vol. 18, Cambridge University Press, Cambridge, 1990. Basic theory and examples. MR 1070979
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- Jacques Dixmier, von Neumann algebras, North-Holland Mathematical Library, vol. 27, North-Holland Publishing Co., Amsterdam-New York, 1981. With a preface by E. C. Lance; Translated from the second French edition by F. Jellett. MR 641217
- Raouf Doss, On the transform of a singular or an absolutely continuous measure, Proc. Amer. Math. Soc. 19 (1968), 361–363. MR 222569, DOI 10.1090/S0002-9939-1968-0222569-4
- M. Duflo and Calvin C. Moore, On the regular representation of a nonunimodular locally compact group, J. Functional Analysis 21 (1976), no. 2, 209–243. MR 0393335, DOI 10.1016/0022-1236(76)90079-3
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628
- J. M. G. Fell, Weak containment and induced representations of groups. II, Trans. Amer. Math. Soc. 110 (1964), 424–447. MR 159898, DOI 10.1090/S0002-9947-1964-0159898-X
- Volker Flory, On the Fourier-algebra of a locally compact amenable group, Proc. Amer. Math. Soc. 29 (1971), 603–606. MR 283138, DOI 10.1090/S0002-9939-1971-0283138-3
- V. Flory, Eine Lebesgue-Zerlegung und funktorielle Eigenschaften der Fourier-Stieltjes Algebra, Inaugural Dissertation, Universität Heidelberg, 1972.
- E. E. Granirer and M. Leinert, On some topologies which coincide on the unit sphere of the Fourier-Stieltjes algebra $B(G)$ and of the measure algebra $M(G)$, Rocky Mountain J. Math. 11 (1981), no. 3, 459–472. MR 722579, DOI 10.1216/RMJ-1981-11-3-459
- F. P. Greenleaf, Amenable actions of locally compact groups, J. Functional Analysis 4 (1969), 295–315. MR 0246999, DOI 10.1016/0022-1236(69)90016-0
- Siegfried Grosser and Martin Moskowitz, Compactness conditions in topological groups, J. Reine Angew. Math. 246 (1971), 1–40. MR 284541, DOI 10.1515/crll.1971.246.1
- Carl Herz, Harmonic synthesis for subgroups, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 3, 91–123 (English, with French summary). MR 355482
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. II: Structure and analysis for compact groups. Analysis on locally compact Abelian groups, Die Grundlehren der mathematischen Wissenschaften, Band 152, Springer-Verlag, New York-Berlin, 1970. MR 0262773
- Roger E. Howe, The Fourier transform for nilpotent locally compact groups. I, Pacific J. Math. 73 (1977), no. 2, 307–327. MR 492059
- Eberhard Kaniuth, On primary ideals in group algebras, Monatsh. Math. 93 (1982), no. 4, 293–302. MR 666831, DOI 10.1007/BF01295230
- Anthony To Ming Lau, Closed convex invariant subsets of $L_{p}(G)$, Trans. Amer. Math. Soc. 232 (1977), 131–142. MR 477604, DOI 10.1090/S0002-9947-1977-0477604-5
- Anthony To Ming Lau and Viktor Losert, The $C^*$-algebra generated by operators with compact support on a locally compact group, J. Funct. Anal. 112 (1993), no. 1, 1–30. MR 1207935, DOI 10.1006/jfan.1993.1024
- Anthony To Ming Lau and Ali Ülger, Some geometric properties on the Fourier and Fourier-Stieltjes algebras of locally compact groups, Arens regularity and related problems, Trans. Amer. Math. Soc. 337 (1993), no. 1, 321–359. MR 1147402, DOI 10.1090/S0002-9947-1993-1147402-7
- Peter F. Mah and Tianxuan Miao, Extreme points of the unit ball of the Fourier-Stieltjes algebra, Proc. Amer. Math. Soc. 128 (2000), no. 4, 1097–1103. MR 1637396, DOI 10.1090/S0002-9939-99-05104-7
- Tianxuan Miao, Decomposition of $B(G)$, Trans. Amer. Math. Soc. 351 (1999), no. 11, 4675–4692. MR 1608490, DOI 10.1090/S0002-9947-99-02328-4
- Calvin C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401–410. MR 302817, DOI 10.1090/S0002-9947-1972-0302817-8
- Richard D. Mosak, The $L^{1}$- and $C^{\ast }$-algebras of $[FIA]^{-}_{B}$ groups, and their representations, Trans. Amer. Math. Soc. 163 (1972), 277–310. MR 293016, DOI 10.1090/S0002-9947-1972-0293016-7
- Alan L. T. Paterson, Amenability, Mathematical Surveys and Monographs, vol. 29, American Mathematical Society, Providence, RI, 1988. MR 961261, DOI 10.1090/surv/029
- Jean-Paul Pier, Amenable locally compact groups, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 767264
- Marc A. Rieffel, Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner, Studies in analysis, Adv. in Math. Suppl. Stud., vol. 4, Academic Press, New York-London, 1979, pp. 43–82. MR 546802
- Masamichi Takesaki, Theory of operator algebras. I, Springer-Verlag, New York-Heidelberg, 1979. MR 548728
- Keith F. Taylor, Geometry of the Fourier algebras and locally compact groups with atomic unitary representations, Math. Ann. 262 (1983), no. 2, 183–190. MR 690194, DOI 10.1007/BF01455310
- Garth Warner, Harmonic analysis on semi-simple Lie groups. II, Die Grundlehren der mathematischen Wissenschaften, Band 189, Springer-Verlag, New York-Heidelberg, 1972. MR 0499000
Bibliographic Information
- E. Kaniuth
- Affiliation: Fachbereich Mathematik/Informatik, Universität Paderborn, D-33095 Paderborn, Germany
- Email: kaniuth@math.uni-paderborn.de
- A. T. Lau
- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Canada T6G 2G1
- MR Author ID: 110640
- Email: tlau@math.ualberta.ca
- G. Schlichting
- Affiliation: Zentrum Mathematik, Technische Universität München, D-80290 München, Germany
- Email: schlicht@mathematik.tu-muenchen.de
- Received by editor(s): July 9, 2002
- Published electronically: November 22, 2002
- Additional Notes: The second author was supported by an NSERC grant.
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1467-1490
- MSC (2000): Primary 43A15; Secondary 22D10
- DOI: https://doi.org/10.1090/S0002-9947-02-03203-8
- MathSciNet review: 1946400