Higher Weierstrass points on

Authors:
Scott Ahlgren and Matthew Papanikolas

Journal:
Trans. Amer. Math. Soc. **355** (2003), 1521-1535

MSC (2000):
Primary 11G18; Secondary 11F33, 14H55

DOI:
https://doi.org/10.1090/S0002-9947-02-03204-X

Published electronically:
November 20, 2002

MathSciNet review:
1946403

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the arithmetic properties of higher Weierstrass points on modular curves for primes . In particular, for , we obtain a relationship between the reductions modulo of the collection of -Weierstrass points on and the supersingular locus in characteristic .

**[A-O]**S. Ahlgren and K. Ono,*Weierstrass points on**and supersingular**-invariants*, Math. Ann., to appear.**[At]**A. O. L. Atkin,*Weierstrass points at cusps of*, Ann. of Math. (2)**85**(1967), 42-45. MR**36:1646****[B-C-P]**W. Bosma, J. Cannon, and C. Playoust,*The Magma algebra system. I. The user language*, J. Symbolic Comput.**24**(1997), 235-265.**[B-K-O]**J. Bruinier, W. Kohnen, and K. Ono,*The arithmetic of the values of modular functions and the divisors of modular forms*, Compositio Math., to appear.**[B]**J.-F. Burnol,*Weierstrass points on arithmetic surfaces*, Invent. Math.**107**(1992), 421-432. MR**93b:14040****[E]**N. D. Elkies,*Elliptic and modular curves over finite fields and related computational issues*, Computational perspectives on number theory (Chicago, IL, 1995), AMS/IP Stud. Adv. Math., vol. 7, Amer. Math. Soc., Providence, RI, 1998, pp. 21-76. MR**99a:11078****[F-K]**H. M. Farkas and I. Kra,*Riemann surfaces*, Springer-Verlag, New York, 1992. MR**93a:30047****[G]**E.-U. Gekeler,*Some observations on the arithmetic of Eisenstein series for the modular group*, Arch. Math. (Basel)**77**(2001), 5-21. MR**2002f:11050****[L-N]**J. Lehner and M. Newman,*Weierstrass points on*, Ann. of Math. (2)**79**(1964), 360-368. MR**28:5045****[K-Z]**M. Kaneko and D. Zagier,*Supersingular**-invariants, hypergeometric series, and Atkin's orthogonal polynomials*, Computational perspectives on number theory (Chicago, IL, 1995), AMS/IP Stud. Adv. Math., vol. 7, Amer. Math. Soc., Providence, RI, 1998, pp. 97-126. MR**99b:11064****[M]**D. Mumford,*The red book of varieties and schemes*, 2nd ed., Springer-Verlag, New York, 1999. MR**2001b:14001****[O1]**A. Ogg,*Hyperelliptic modular curves*, Bull. Soc. Math. France**102**(1974), 449-462. MR**51:514****[O2]**A. Ogg,*On the Weierstrass points of*, Illinois J. Math.**22**(1978), 31-35. MR**57:3136****[R1]**D. Rohrlich,*Some remarks on Weierstrass points*, Number Theory Related to Fermat's Last Theorem (ed. N. Koblitz), Birkhäuser, Prog. Math.**26**(1982), 71-78. MR**84d:14008****[R2]**D. Rohrlich,*Weierstrass points and modular forms*, Illinois J. Math.**29**(1985), 134-141. MR**86e:11032****[Sc]**B. Schoeneberg,*Elliptic modular functions*, Springer-Verlag, New York, Heidelberg, Berlin, 1974. MR**54:236****[Se]**J.-P. Serre,*Formes modulaires et fonctions zêta**-adiques*, Modular functions of one variable, III, Lecture Notes in Math., Vol. 350, Springer-Verlag, Berlin, 1973, pp. 191-268. MR**53:7949b****[Sh]**G. Shimura,*Introduction to the arithmetic theory of automorphic functions*, Princeton University Press, Princeton, NJ, 1994, reprint of the 1971 original. MR**95e:11048**; MR**47:3318****[Si]**J. H. Silverman,*Some arithmetic properties of Weierstrass points: hyperelliptic curves*, Bol. Soc. Brasil. Mat. (N.S.)**21**(1990), 11-50. MR**92k:11066****[Sw]**H. P. F. Swinnerton-Dyer,*On**-adic representations and congruences for modular forms*, Modular functions of one variable, III, Lecture Notes in Math., Vol. 350, Springer-Verlag, Berlin, 1973, pp. 1-55. MR**53:10717a**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
11G18,
11F33,
14H55

Retrieve articles in all journals with MSC (2000): 11G18, 11F33, 14H55

Additional Information

**Scott Ahlgren**

Affiliation:
Department of Mathematics, University of Illinois, Urbana, Illinois 61801

Email:
ahlgren@math.uiuc.edu

**Matthew Papanikolas**

Affiliation:
Department of Mathematics, Brown University, Providence, Rhode Island 02912

Email:
map@math.brown.edu

DOI:
https://doi.org/10.1090/S0002-9947-02-03204-X

Keywords:
Weierstrass points,
modular curves

Received by editor(s):
July 31, 2002

Received by editor(s) in revised form:
September 19, 2002

Published electronically:
November 20, 2002

Additional Notes:
The first author thanks the National Science Foundation for its support through grant DMS 01-34577

Article copyright:
© Copyright 2002
American Mathematical Society