## Higher Weierstrass points on $X_{0}(p)$

HTML articles powered by AMS MathViewer

- by Scott Ahlgren and Matthew Papanikolas PDF
- Trans. Amer. Math. Soc.
**355**(2003), 1521-1535 Request permission

## Abstract:

We study the arithmetic properties of higher Weierstrass points on modular curves $X_{0}(p)$ for primes $p$. In particular, for $r\in \{2, 3, 4, 5\}$, we obtain a relationship between the reductions modulo $p$ of the collection of $r$-Weierstrass points on $X_{0}(p)$ and the supersingular locus in characteristic $p$.## References

- S. Ahlgren and K. Ono,
*Weierstrass points on $X_{0}(p)$ and supersingular $j$-invariants*, Math. Ann., to appear. - A. O. L. Atkin,
*Weierstrass points at cusps $\Gamma _{o}(n)$*, Ann. of Math. (2)**85**(1967), 42–45 (German). MR**218561**, DOI 10.2307/1970524 - W. Bosma, J. Cannon, and C. Playoust,
*The Magma algebra system. I. The user language*, J. Symbolic Comput.**24**(1997), 235–265. - J. Bruinier, W. Kohnen, and K. Ono,
*The arithmetic of the values of modular functions and the divisors of modular forms*, Compositio Math., to appear. - Jean-François Burnol,
*Weierstrass points on arithmetic surfaces*, Invent. Math.**107**(1992), no. 2, 421–432. MR**1144430**, DOI 10.1007/BF01231896 - Noam D. Elkies,
*Elliptic and modular curves over finite fields and related computational issues*, Computational perspectives on number theory (Chicago, IL, 1995) AMS/IP Stud. Adv. Math., vol. 7, Amer. Math. Soc., Providence, RI, 1998, pp. 21–76. MR**1486831**, DOI 10.1090/amsip/007/03 - H. M. Farkas and I. Kra,
*Riemann surfaces*, 2nd ed., Graduate Texts in Mathematics, vol. 71, Springer-Verlag, New York, 1992. MR**1139765**, DOI 10.1007/978-1-4612-2034-3 - Ernst-Ulrich Gekeler,
*Some observations on the arithmetic of Eisenstein series for the modular group $\textrm {SL}(2,{\Bbb Z})$*, Arch. Math. (Basel)**77**(2001), no. 1, 5–21. Festschrift: Erich Lamprecht. MR**1845671**, DOI 10.1007/PL00000465 - J. Lehner and M. Newman,
*Weierstrass points of $\Gamma _{0}\,(n)$*, Ann. of Math. (2)**79**(1964), 360–368. MR**161841**, DOI 10.2307/1970550 - M. Kaneko and D. Zagier,
*Supersingular $j$-invariants, hypergeometric series, and Atkin’s orthogonal polynomials*, Computational perspectives on number theory (Chicago, IL, 1995) AMS/IP Stud. Adv. Math., vol. 7, Amer. Math. Soc., Providence, RI, 1998, pp. 97–126. MR**1486833**, DOI 10.1090/amsip/007/05 - David Mumford,
*The red book of varieties and schemes*, Second, expanded edition, Lecture Notes in Mathematics, vol. 1358, Springer-Verlag, Berlin, 1999. Includes the Michigan lectures (1974) on curves and their Jacobians; With contributions by Enrico Arbarello. MR**1748380**, DOI 10.1007/b62130 - Andrew P. Ogg,
*Hyperelliptic modular curves*, Bull. Soc. Math. France**102**(1974), 449–462. MR**364259** - A. P. Ogg,
*On the Weierstrass points of $X_{0}(N)$*, Illinois J. Math.**22**(1978), no. 1, 31–35. MR**463178** - David E. Rohrlich,
*Some remarks on Weierstrass points*, Number theory related to Fermat’s last theorem (Cambridge, Mass., 1981), Progr. Math., vol. 26, Birkhäuser, Boston, Mass., 1982, pp. 71–78. MR**685289** - David E. Rohrlich,
*Weierstrass points and modular forms*, Illinois J. Math.**29**(1985), no. 1, 134–141. MR**769762** - Bruno Schoeneberg,
*Elliptic modular functions: an introduction*, Die Grundlehren der mathematischen Wissenschaften, Band 203, Springer-Verlag, New York-Heidelberg, 1974. Translated from the German by J. R. Smart and E. A. Schwandt. MR**0412107** - Jean-Pierre Serre,
*Formes modulaires et fonctions zêta $p$-adiques*, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 191–268 (French). MR**0404145** - L. Kantorovitch,
*The method of successive approximations for functional equations*, Acta Math.**71**(1939), 63–97. MR**95**, DOI 10.1007/BF02547750 - Joseph H. Silverman,
*Some arithmetic properties of Weierstrass points: hyperelliptic curves*, Bol. Soc. Brasil. Mat. (N.S.)**21**(1990), no. 1, 11–50. MR**1139554**, DOI 10.1007/BF01236278 - H. P. F. Swinnerton-Dyer,
*On $l$-adic representations and congruences for coefficients of modular forms*, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 1–55. MR**0406931**

## Additional Information

**Scott Ahlgren**- Affiliation: Department of Mathematics, University of Illinois, Urbana, Illinois 61801
- Email: ahlgren@math.uiuc.edu
**Matthew Papanikolas**- Affiliation: Department of Mathematics, Brown University, Providence, Rhode Island 02912
- Email: map@math.brown.edu
- Received by editor(s): July 31, 2002
- Received by editor(s) in revised form: September 19, 2002
- Published electronically: November 20, 2002
- Additional Notes: The first author thanks the National Science Foundation for its support through grant DMS 01-34577
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**355**(2003), 1521-1535 - MSC (2000): Primary 11G18; Secondary 11F33, 14H55
- DOI: https://doi.org/10.1090/S0002-9947-02-03204-X
- MathSciNet review: 1946403