## Seiberg-Witten invariants, orbifolds, and circle actions

HTML articles powered by AMS MathViewer

- by Scott Jeremy Baldridge PDF
- Trans. Amer. Math. Soc.
**355**(2003), 1669-1697 Request permission

## Abstract:

The main result of this paper is a formula for calculating the Seiberg-Witten invariants of 4-manifolds with fixed-point-free circle actions. This is done by showing under suitable conditions the existence of a diffeomorphism between the moduli space of the 4-manifold and the moduli space of the quotient 3-orbifold. Two corollaries include the fact that $b_+ {>} 1$ $4$-manifolds with fixed-point-free circle actions are simple type and a new proof of the equality $\mathcal {SW}_{Y^3\times S^1} = \mathcal {SW}_{Y^3}$. An infinite number of $4$-manifolds with $b_+=1$ whose Seiberg-Witten invariants are still diffeomorphism invariants is constructed and studied.## References

- Scott Baldridge,
*Seiberg-Witten invariants of 4-manifolds with free circle actions*, Commun. Contemp. Math.**3**(2001), no. 3, 341–353. MR**1849644**, DOI 10.1142/S021919970100038X - S. K. Donaldson,
*The Seiberg-Witten equations and $4$-manifold topology*, Bull. Amer. Math. Soc. (N.S.)**33**(1996), no. 1, 45–70. MR**1339810**, DOI 10.1090/S0273-0979-96-00625-8 - Ronald Fintushel,
*Circle actions on simply connected $4$-manifolds*, Trans. Amer. Math. Soc.**230**(1977), 147–171. MR**458456**, DOI 10.1090/S0002-9947-1977-0458456-6 - Ronald Fintushel,
*Classification of circle actions on $4$-manifolds*, Trans. Amer. Math. Soc.**242**(1978), 377–390. MR**496815**, DOI 10.1090/S0002-9947-1978-0496815-7 - Mikio Furuta and Brian Steer,
*Seifert fibred homology $3$-spheres and the Yang-Mills equations on Riemann surfaces with marked points*, Adv. Math.**96**(1992), no. 1, 38–102. MR**1185787**, DOI 10.1016/0001-8708(92)90051-L - Wolfgang Huck and Volker Puppe,
*Circle actions on $4$-manifolds. II*, Arch. Math. (Basel)**71**(1998), no. 6, 493–500. MR**1653412**, DOI 10.1007/s000130050294 - T. J. Li and A. Liu,
*General wall crossing formula*, Math. Res. Lett.**2**(1995), no. 6, 797–810. MR**1362971**, DOI 10.4310/MRL.1995.v2.n6.a11 - John W. Morgan,
*The Seiberg-Witten equations and applications to the topology of smooth four-manifolds*, Mathematical Notes, vol. 44, Princeton University Press, Princeton, NJ, 1996. MR**1367507** - Guowu Meng and Clifford Henry Taubes,
*$\underline \textrm {SW}=$ Milnor torsion*, Math. Res. Lett.**3**(1996), no. 5, 661–674. MR**1418579**, DOI 10.4310/MRL.1996.v3.n5.a8 - Tomasz Mrowka, Peter Ozsváth, and Baozhen Yu,
*Seiberg-Witten monopoles on Seifert fibered spaces*, Comm. Anal. Geom.**5**(1997), no. 4, 685–791. MR**1611061**, DOI 10.4310/CAG.1997.v5.n4.a3 - Liviu I. Nicolaescu,
*Notes on Seiberg-Witten theory*, Graduate Studies in Mathematics, vol. 28, American Mathematical Society, Providence, RI, 2000. MR**1787219**, DOI 10.1090/gsm/028 - Peter Ozsváth and Zoltán Szabó,
*Higher type adjunction inequalities in Seiberg-Witten theory*, J. Differential Geom.**55**(2000), no. 3, 385–440. MR**1863729** - Peter Ozsváth and Zoltán Szabó,
*The symplectic Thom conjecture*, Ann. of Math. (2)**151**(2000), no. 1, 93–124. MR**1745017**, DOI 10.2307/121113 - Dale Rolfsen,
*Knots and links*, Mathematics Lecture Series, vol. 7, Publish or Perish, Inc., Houston, TX, 1990. Corrected reprint of the 1976 original. MR**1277811** - Ichirô Satake,
*The Gauss-Bonnet theorem for $V$-manifolds*, J. Math. Soc. Japan**9**(1957), 464–492. MR**95520**, DOI 10.2969/jmsj/00940464 - Clifford Henry Taubes,
*The Seiberg-Witten invariants and symplectic forms*, Math. Res. Lett.**1**(1994), no. 6, 809–822. MR**1306023**, DOI 10.4310/MRL.1994.v1.n6.a15 - Edward Witten,
*Monopoles and four-manifolds*, Math. Res. Lett.**1**(1994), no. 6, 769–796. MR**1306021**, DOI 10.4310/MRL.1994.v1.n6.a13

## Additional Information

**Scott Jeremy Baldridge**- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- Email: sbaldrid@indiana.edu
- Received by editor(s): May 8, 2002
- Received by editor(s) in revised form: September 6, 2002
- Published electronically: December 6, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**355**(2003), 1669-1697 - MSC (2000): Primary 57R57, 57M60; Secondary 55R35
- DOI: https://doi.org/10.1090/S0002-9947-02-03205-1
- MathSciNet review: 1946410