Seiberg-Witten invariants, orbifolds, and circle actions
HTML articles powered by AMS MathViewer
- by Scott Jeremy Baldridge
- Trans. Amer. Math. Soc. 355 (2003), 1669-1697
- DOI: https://doi.org/10.1090/S0002-9947-02-03205-1
- Published electronically: December 6, 2002
- PDF | Request permission
Abstract:
The main result of this paper is a formula for calculating the Seiberg-Witten invariants of 4-manifolds with fixed-point-free circle actions. This is done by showing under suitable conditions the existence of a diffeomorphism between the moduli space of the 4-manifold and the moduli space of the quotient 3-orbifold. Two corollaries include the fact that $b_+ {>} 1$ $4$-manifolds with fixed-point-free circle actions are simple type and a new proof of the equality $\mathcal {SW}_{Y^3\times S^1} = \mathcal {SW}_{Y^3}$. An infinite number of $4$-manifolds with $b_+=1$ whose Seiberg-Witten invariants are still diffeomorphism invariants is constructed and studied.References
- Scott Baldridge, Seiberg-Witten invariants of 4-manifolds with free circle actions, Commun. Contemp. Math. 3 (2001), no. 3, 341–353. MR 1849644, DOI 10.1142/S021919970100038X
- S. K. Donaldson, The Seiberg-Witten equations and $4$-manifold topology, Bull. Amer. Math. Soc. (N.S.) 33 (1996), no. 1, 45–70. MR 1339810, DOI 10.1090/S0273-0979-96-00625-8
- Ronald Fintushel, Circle actions on simply connected $4$-manifolds, Trans. Amer. Math. Soc. 230 (1977), 147–171. MR 458456, DOI 10.1090/S0002-9947-1977-0458456-6
- Ronald Fintushel, Classification of circle actions on $4$-manifolds, Trans. Amer. Math. Soc. 242 (1978), 377–390. MR 496815, DOI 10.1090/S0002-9947-1978-0496815-7
- Mikio Furuta and Brian Steer, Seifert fibred homology $3$-spheres and the Yang-Mills equations on Riemann surfaces with marked points, Adv. Math. 96 (1992), no. 1, 38–102. MR 1185787, DOI 10.1016/0001-8708(92)90051-L
- Wolfgang Huck and Volker Puppe, Circle actions on $4$-manifolds. II, Arch. Math. (Basel) 71 (1998), no. 6, 493–500. MR 1653412, DOI 10.1007/s000130050294
- T. J. Li and A. Liu, General wall crossing formula, Math. Res. Lett. 2 (1995), no. 6, 797–810. MR 1362971, DOI 10.4310/MRL.1995.v2.n6.a11
- John W. Morgan, The Seiberg-Witten equations and applications to the topology of smooth four-manifolds, Mathematical Notes, vol. 44, Princeton University Press, Princeton, NJ, 1996. MR 1367507
- Guowu Meng and Clifford Henry Taubes, $\underline \textrm {SW}=$ Milnor torsion, Math. Res. Lett. 3 (1996), no. 5, 661–674. MR 1418579, DOI 10.4310/MRL.1996.v3.n5.a8
- Tomasz Mrowka, Peter Ozsváth, and Baozhen Yu, Seiberg-Witten monopoles on Seifert fibered spaces, Comm. Anal. Geom. 5 (1997), no. 4, 685–791. MR 1611061, DOI 10.4310/CAG.1997.v5.n4.a3
- Liviu I. Nicolaescu, Notes on Seiberg-Witten theory, Graduate Studies in Mathematics, vol. 28, American Mathematical Society, Providence, RI, 2000. MR 1787219, DOI 10.1090/gsm/028
- Peter Ozsváth and Zoltán Szabó, Higher type adjunction inequalities in Seiberg-Witten theory, J. Differential Geom. 55 (2000), no. 3, 385–440. MR 1863729
- Peter Ozsváth and Zoltán Szabó, The symplectic Thom conjecture, Ann. of Math. (2) 151 (2000), no. 1, 93–124. MR 1745017, DOI 10.2307/121113
- Dale Rolfsen, Knots and links, Mathematics Lecture Series, vol. 7, Publish or Perish, Inc., Houston, TX, 1990. Corrected reprint of the 1976 original. MR 1277811
- Ichirô Satake, The Gauss-Bonnet theorem for $V$-manifolds, J. Math. Soc. Japan 9 (1957), 464–492. MR 95520, DOI 10.2969/jmsj/00940464
- Clifford Henry Taubes, The Seiberg-Witten invariants and symplectic forms, Math. Res. Lett. 1 (1994), no. 6, 809–822. MR 1306023, DOI 10.4310/MRL.1994.v1.n6.a15
- Edward Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994), no. 6, 769–796. MR 1306021, DOI 10.4310/MRL.1994.v1.n6.a13
Bibliographic Information
- Scott Jeremy Baldridge
- Affiliation: Department of Mathematics, Indiana University, Bloomington, Indiana 47405
- Email: sbaldrid@indiana.edu
- Received by editor(s): May 8, 2002
- Received by editor(s) in revised form: September 6, 2002
- Published electronically: December 6, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1669-1697
- MSC (2000): Primary 57R57, 57M60; Secondary 55R35
- DOI: https://doi.org/10.1090/S0002-9947-02-03205-1
- MathSciNet review: 1946410