Couples contacto-symplectiques
HTML articles powered by AMS MathViewer
- by Gianluca Bande
- Trans. Amer. Math. Soc. 355 (2003), 1699-1711
- DOI: https://doi.org/10.1090/S0002-9947-02-03209-9
- Published electronically: November 20, 2002
- PDF | Request permission
Abstract:
We introduce a new geometric structure on differentiable manifolds. A contact-symplectic pair on a manifold $M$ is a pair $\left ( \alpha ,\eta \right )$ where $\alpha$ is a Pfaffian form of constant class $2k+1$ and $\eta$ a $2$-form of constant class$\ 2h$ such that $\alpha \wedge d\alpha ^{k}\wedge \eta ^{h}$ is a volume form. Each form has a characteristic foliation whose leaves are symplectic and contact manifolds respectively. These foliations are transverse and complementary. Some other differential objects are associated to it. We give a local model and several existence theorems on nilpotent Lie groups, nilmanifolds and principal torus bundles. As a deep application of this theory, we give a negative answer to the famous Reeb’s problem which asks if every vector field without closed 1-codimensional transversal on a manifold having contact forms is the Reeb vector field of a contact form.References
- Gianluca Bande, On generalized contact forms, Differential Geom. Appl. 11 (1999), no. 3, 257–263. MR 1726541, DOI 10.1016/S0926-2245(99)00038-8
- Bande G., Formes de contact généralisé, couples de contact et couples contacto-symplectiques, Thèse de Doctorat, Université de Haute Alsace, 2000.
- Bande G. et Hadjar A., Couples de contact, à paraître.
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- Cartan E., Leçons sur les invariants intégraux, Hermann, Paris, 1922.
- Michel Goze and Yusupdjan Khakimdjanov, Nilpotent Lie algebras, Mathematics and its Applications, vol. 361, Kluwer Academic Publishers Group, Dordrecht, 1996. MR 1383588, DOI 10.1007/978-94-017-2432-6
- John W. Gray, Some global properties of contact structures, Ann. of Math. (2) 69 (1959), 421–450. MR 112161, DOI 10.2307/1970192
- Hadjar A., Sur un problème d’existence relatif de formes de contact invariantes en dimension trois, Ann. Inst. Fourier, Grenoble, 42, 891-904, 1992.
- Amine Hadjar, Sur les structures de contact régulières en dimension trois, Trans. Amer. Math. Soc. 347 (1995), no. 7, 2473–2480 (French, with English and French summaries). MR 1308013, DOI 10.1090/S0002-9947-1995-1308013-5
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- S. Minakshi Sundaram, On non-linear partial differential equations of the parabolic type, Proc. Indian Acad. Sci., Sect. A. 9 (1939), 479–494. MR 0000088
- Paulette Libermann, Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact, Colloque Géom. Diff. Globale (Bruxelles, 1958) Centre Belge Rech. Math., Louvain, 1959, pp. 37–59 (French). MR 0119153
- Robert Lutz, Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier (Grenoble) 27 (1977), no. 3, ix, 1–15 (French, with English summary). MR 478180
- Robert Lutz, Sur la géométrie des structures de contact invariantes, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 1, xvii, 283–306 (French, with English summary). MR 526789
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- D. Tischler, On fibering certain foliated manifolds over $S^{1}$, Topology 9 (1970), 153–154. MR 256413, DOI 10.1016/0040-9383(70)90037-6
Bibliographic Information
- Gianluca Bande
- Affiliation: Università degli studi di Cagliari, Dip. Mat., Via Ospedale 72, 09129 Cagliari, Italy
- Email: gbande@unica.it
- Received by editor(s): May 3, 2002
- Received by editor(s) in revised form: September 26, 2002
- Published electronically: November 20, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1699-1711
- MSC (2000): Primary 53D10; Secondary 57R17
- DOI: https://doi.org/10.1090/S0002-9947-02-03209-9
- MathSciNet review: 1946411