## Existence and uniqueness for a semilinear elliptic problem on Lipschitz domains in Riemannian manifolds II

HTML articles powered by AMS MathViewer

- by Martin Dindoš PDF
- Trans. Amer. Math. Soc.
**355**(2003), 1365-1399 Request permission

## Abstract:

Extending our recent work for the semilinear elliptic equation on Lipschitz domains, we study a general second-order Dirichlet problem $Lu-F(x,u)=0$ in $\Omega$. We improve our previous results by studying more general nonlinear terms $F(x,u)$ with polynomial (and in some cases exponential) growth in the variable $u$. We also study the case of nonnegative solutions.## References

- Jöran Bergh and Jörgen Löfström,
*Interpolation spaces. An introduction*, Grundlehren der Mathematischen Wissenschaften, No. 223, Springer-Verlag, Berlin-New York, 1976. MR**0482275** - Z.-Q. Chen, R. J. Williams, and Z. Zhao,
*On the existence of positive solutions for semilinear elliptic equations with singular lower order coefficients and Dirichlet boundary conditions*, Math. Ann.**315**(1999), no. 4, 735–769. MR**1731467**, DOI 10.1007/s002080050334 - M. Dindoš,
*Existence and uniqueness for a semilinear elliptic problem on Lipschitz domains in Riemannian manifolds*, Comm. Partial Differential Equations**27**(2002), 219–281. - M. Dindoš,
*Hardy spaces and potential theory on $C^{1}$ domains in Riemannian manifolds*, Preprint (2001). - M. Dindoš and M. Mitrea,
*Semilinear Poisson Problem in Sobolev-Besov spaces on Lipschitz domains*, Publicacions Matemàtiques**46**(2002), 353–403. - Björn E. J. Dahlberg,
*On the Poisson integral for Lipschitz and $C^{1}$-domains*, Studia Math.**66**(1979), no. 1, 13–24. MR**562447**, DOI 10.4064/sm-66-1-13-24 - Björn E. J. Dahlberg and Carlos E. Kenig,
*Hardy spaces and the Neumann problem in $L^p$ for Laplace’s equation in Lipschitz domains*, Ann. of Math. (2)**125**(1987), no. 3, 437–465. MR**890159**, DOI 10.2307/1971407 - B. E. J. Dahlberg, C. E. Kenig, and G. C. Verchota,
*Boundary value problems for the systems of elastostatics in Lipschitz domains*, Duke Math. J.**57**(1988), no. 3, 795–818. MR**975122**, DOI 10.1215/S0012-7094-88-05735-3 - E. B. Fabes, M. Jodeit Jr., and N. M. Rivière,
*Potential techniques for boundary value problems on $C^{1}$-domains*, Acta Math.**141**(1978), no. 3-4, 165–186. MR**501367**, DOI 10.1007/BF02545747 - E. B. Fabes, C. E. Kenig, and G. C. Verchota,
*The Dirichlet problem for the Stokes system on Lipschitz domains*, Duke Math. J.**57**(1988), no. 3, 769–793. MR**975121**, DOI 10.1215/S0012-7094-88-05734-1 - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, Classics in Mathematics, Springer-Verlag, Berlin, 2001. Reprint of the 1998 edition. MR**1814364** - Victor Isakov and Adrian I. Nachman,
*Global uniqueness for a two-dimensional semilinear elliptic inverse problem*, Trans. Amer. Math. Soc.**347**(1995), no. 9, 3375–3390. MR**1311909**, DOI 10.1090/S0002-9947-1995-1311909-1 - Zhiren Jin,
*Solvability of Dirichlet problems for semilinear elliptic equations on certain domains*, Pacific J. Math.**176**(1996), no. 1, 117–128. MR**1433984** - F. John and L. Nirenberg,
*On functions of bounded mean oscillation*, Comm. Pure Appl. Math.**14**(1961), 415–426. MR**131498**, DOI 10.1002/cpa.3160140317 - Carlos E. Kenig,
*Harmonic analysis techniques for second order elliptic boundary value problems*, CBMS Regional Conference Series in Mathematics, vol. 83, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994. MR**1282720**, DOI 10.1090/cbms/083 - Carlos E. Kenig,
*Elliptic boundary value problems on Lipschitz domains*, Beijing lectures in harmonic analysis (Beijing, 1984) Ann. of Math. Stud., vol. 112, Princeton Univ. Press, Princeton, NJ, 1986, pp. 131–183. MR**864372** - R. Mazzeo and M. Taylor,
*Curvature and Uniformization*, Israel J. Math.**130**(2002), 323–346. - Dorina Mitrea, Marius Mitrea, and Jill Pipher,
*Vector potential theory on nonsmooth domains in $\textbf {R}^3$ and applications to electromagnetic scattering*, J. Fourier Anal. Appl.**3**(1997), no. 2, 131–192. MR**1438894**, DOI 10.1007/s00041-001-4053-0 - Dorina Mitrea, Marius Mitrea, and Michael Taylor,
*Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds*, Mem. Amer. Math. Soc.**150**(2001), no. 713, x+120. MR**1809655**, DOI 10.1090/memo/0713 - Marius Mitrea and Michael Taylor,
*Boundary layer methods for Lipschitz domains in Riemannian manifolds*, J. Funct. Anal.**163**(1999), no. 2, 181–251. MR**1680487**, DOI 10.1006/jfan.1998.3383 - Marius Mitrea and Michael Taylor,
*Potential theory on Lipschitz domains in Riemannian manifolds: $L^P$ Hardy, and Hölder space results*, Comm. Anal. Geom.**9**(2001), no. 2, 369–421. MR**1846208**, DOI 10.4310/CAG.2001.v9.n2.a6 - Marius Mitrea and Michael Taylor,
*Potential theory on Lipschitz domains in Riemannian manifolds: Hölder continuous metric tensors*, Comm. Partial Differential Equations**25**(2000), no. 7-8, 1487–1536. MR**1765156**, DOI 10.1080/03605300008821557 - Nelson Dunford,
*A mean ergodic theorem*, Duke Math. J.**5**(1939), 635–646. MR**98** - Gregory Verchota,
*Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains*, J. Funct. Anal.**59**(1984), no. 3, 572–611. MR**769382**, DOI 10.1016/0022-1236(84)90066-1

## Additional Information

**Martin Dindoš**- Affiliation: Department of Mathematics, Malott Hall, Cornell University, Ithaca, New York 14853-4201
- ORCID: 0000-0002-6886-7677
- Email: dindos@math.cornell.edu
- Received by editor(s): September 11, 2001
- Received by editor(s) in revised form: July 24, 2002
- Published electronically: December 2, 2002
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**355**(2003), 1365-1399 - MSC (2000): Primary 35J65, 35B65; Secondary 46E35, 42B20
- DOI: https://doi.org/10.1090/S0002-9947-02-03210-5
- MathSciNet review: 1946396