Skip to Main Content

Transactions of the American Mathematical Society

Published by the American Mathematical Society, the Transactions of the American Mathematical Society (TRAN) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2020 MCQ for Transactions of the American Mathematical Society is 1.43.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Approximation of plurisubharmonic functions by multipole Green functions
HTML articles powered by AMS MathViewer

by Evgeny A. Poletsky PDF
Trans. Amer. Math. Soc. 355 (2003), 1579-1591 Request permission

Abstract:

For a strongly hyperconvex domain $D\subset {{\mathbb {C}}}^n$ we prove that multipole pluricomplex Green functions are dense in the cone in $L^1(D)$ of negative plurisubharmonic functions with zero boundary values.
References
  • A. Aytuna, A. Rashkovskii and V. P. Zahariuta, Width asymptotics for a pair of Reinhardt domains, Ann. Polon. Math., 78 (2002), 31–38.
  • Errett Bishop, Mappings of partially analytic spaces, Amer. J. Math. 83 (1961), 209–242. MR 123732, DOI 10.2307/2372953
  • Jean-Pierre Demailly, Mesures de Monge-Ampère et mesures pluriharmoniques, Math. Z. 194 (1987), no. 4, 519–564 (French). MR 881709, DOI 10.1007/BF01161920
  • Robert C. Gunning and Hugo Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR 0180696
  • M. Klimek, Extremal plurisubharmonic functions and invariant pseudodistances, Bull. Soc. Math. France, 113 (1985), 123–142.
  • Maciej Klimek, Pluripotential theory, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR 1150978
  • S. Nivoche, Sur une conjecture de Zahariuta et un problème de Kolmogorov, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), 839–843.
  • S. Nivoche and E. A. Poletsky, Multipole Green functions, (preprint)
  • Nessim Sibony, Prolongement des fonctions holomorphes bornées et métrique de Carathéodory, Invent. Math. 29 (1975), no. 3, 205–230 (French). MR 385164, DOI 10.1007/BF01389850
  • V. P. Zahariuta, Spaces of analytic functions and maximal plurisubharmonic functions, Doc. Sci. Thesis, 1984.
  • V. Zahariuta, Spaces of analytic functions and complex potential theory, Linear Topol. Spaces Complex Anal. 1 (1994), 74–146. MR 1323360
  • V. P. Zaharjuta and N. I. Skiba, Estimates of the $n$-widths of certain classes of functions that are analytic on Riemann surfaces, Mat. Zametki 19 (1976), no. 6, 899–911 (Russian). MR 419783
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 32U35, 32U15
  • Retrieve articles in all journals with MSC (2000): 32U35, 32U15
Additional Information
  • Evgeny A. Poletsky
  • Affiliation: Department of Mathematics, 215 Carnegie Hall, Syracuse University, Syracuse, New York 13244
  • MR Author ID: 197859
  • Received by editor(s): August 28, 2001
  • Published electronically: November 18, 2002
  • Additional Notes: The author was partially supported by NSF Grant DMS-9804755
  • © Copyright 2002 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 355 (2003), 1579-1591
  • MSC (2000): Primary 32U35; Secondary 32U15
  • DOI: https://doi.org/10.1090/S0002-9947-02-03215-4
  • MathSciNet review: 1946406