## Approximation of plurisubharmonic functions by multipole Green functions

HTML articles powered by AMS MathViewer

- by Evgeny A. Poletsky PDF
- Trans. Amer. Math. Soc.
**355**(2003), 1579-1591 Request permission

## Abstract:

For a strongly hyperconvex domain $D\subset {{\mathbb {C}}}^n$ we prove that multipole pluricomplex Green functions are dense in the cone in $L^1(D)$ of negative plurisubharmonic functions with zero boundary values.## References

- A. Aytuna, A. Rashkovskii and V. P. Zahariuta,
*Width asymptotics for a pair of Reinhardt domains,*Ann. Polon. Math.,**78**(2002), 31–38. - Errett Bishop,
*Mappings of partially analytic spaces*, Amer. J. Math.**83**(1961), 209–242. MR**123732**, DOI 10.2307/2372953 - Jean-Pierre Demailly,
*Mesures de Monge-Ampère et mesures pluriharmoniques*, Math. Z.**194**(1987), no. 4, 519–564 (French). MR**881709**, DOI 10.1007/BF01161920 - Robert C. Gunning and Hugo Rossi,
*Analytic functions of several complex variables*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR**0180696** - M. Klimek,
*Extremal plurisubharmonic functions and invariant pseudodistances,*Bull. Soc. Math. France,**113**(1985), 123–142. - Maciej Klimek,
*Pluripotential theory*, London Mathematical Society Monographs. New Series, vol. 6, The Clarendon Press, Oxford University Press, New York, 1991. Oxford Science Publications. MR**1150978** - S. Nivoche,
*Sur une conjecture de Zahariuta et un problème de Kolmogorov,*C. R. Acad. Sci. Paris Sér. I Math.**333**(2001), 839–843. - S. Nivoche and E. A. Poletsky,
*Multipole Green functions,*(preprint) - Nessim Sibony,
*Prolongement des fonctions holomorphes bornées et métrique de Carathéodory*, Invent. Math.**29**(1975), no. 3, 205–230 (French). MR**385164**, DOI 10.1007/BF01389850 - V. P. Zahariuta,
*Spaces of analytic functions and maximal plurisubharmonic functions,*Doc. Sci. Thesis, 1984. - V. Zahariuta,
*Spaces of analytic functions and complex potential theory*, Linear Topol. Spaces Complex Anal.**1**(1994), 74–146. MR**1323360** - V. P. Zaharjuta and N. I. Skiba,
*Estimates of the $n$-widths of certain classes of functions that are analytic on Riemann surfaces*, Mat. Zametki**19**(1976), no. 6, 899–911 (Russian). MR**419783**

## Additional Information

**Evgeny A. Poletsky**- Affiliation: Department of Mathematics, 215 Carnegie Hall, Syracuse University, Syracuse, New York 13244
- MR Author ID: 197859
- Received by editor(s): August 28, 2001
- Published electronically: November 18, 2002
- Additional Notes: The author was partially supported by NSF Grant DMS-9804755
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**355**(2003), 1579-1591 - MSC (2000): Primary 32U35; Secondary 32U15
- DOI: https://doi.org/10.1090/S0002-9947-02-03215-4
- MathSciNet review: 1946406