Remote Access Transactions of the American Mathematical Society
Green Open Access

Transactions of the American Mathematical Society

ISSN 1088-6850(online) ISSN 0002-9947(print)



Square-integrability modulo a subgroup

Authors: G. Cassinelli and E. De Vito
Journal: Trans. Amer. Math. Soc. 355 (2003), 1443-1465
MSC (2000): Primary 43A32, 43A85, 42C40
Published electronically: December 4, 2002
MathSciNet review: 1946399
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We prove a weak form of the Frobenius reciprocity theorem for locally compact groups. As a consequence, we propose a definition of square-integrable representation modulo a subgroup that clarifies the relations between coherent states, wavelet transforms and covariant localisation observables. A self-contained proof of the imprimitivity theorem for covariant positive operator-valued measures is given.

References [Enhancements On Off] (What's this?)

  • 1. S. T. Ali, A general theorem on square-integrability: vector coherent states, J. Math. Phys. 39 (1999), 3954-3964. MR 99h:22015
  • 2. S. T. Ali, J.-P. Antoine, and J.-P. Gazeau, Coherent States, Wavelets and Their Generalizations, Springer-Verlag, New York, 2000.
  • 3. S. T. Ali, H. Führ, and A. E. Krasowska, Plancherel inversion as unified approach to wavelet transform and Wigner function, preprint math-ph/0106014.
  • 4. R. J. Blattner, On induced representations, Amer. J. Math. 83 (1961), 79-98. MR 23:A2757
  • 5. A. Borel, Représentations de groupes localement compacts, Lectures Notes in Mathematics No. 256, Springer-Verlag, New York, 1972. MR 54:2871
  • 6. P. Busch, M. Grabowski, and P. Lahti, Operational Quantum Physics, Lecture Notes in Physics, New Series m: Monographs, vol. 31, 2nd corrected printing, Springer-Verlag, Berlin, 1997. MR 96j:81022 (1st ed.)
  • 7. U. Cattaneo, On Mackey's imprimitivity theorem, Comment. Math. Helvetici 54 (1979), 629-641. MR 81b:22009
  • 8. D. P. L. Castrigiano and R. W. Henrichs, Systems of covariance and subrepresentations of induced representations, Lett. Math. Phys. 4 (1980), 169-175. MR 81j:22010
  • 9. E. B. Davies, On the repeated measurement of continuous observables in quantum mechanics, J. Funct. Anal. 6 (1970), 318-346. MR 51:4896
  • 10. J. Dieudonné, Elements d'analyse, Vol. 2, Gauthiers-Villars, Paris, 1968. MR 38:4247
  • 11. J. Dieudonné, Elements d'analyse, Vol. 6, Gauthiers-Villars, Paris, 1975. MR 58:29825a
  • 12. M. Duflo and C. C. Moore, On the regular representation of a nonunimodular locally compact group, J. Funct. Anal. 21 (1976), 209-243. MR 52:14145
  • 13. G. B. Folland, A Course in Abstract Harmonic Analysis, CRC Press, Boca Raton, 1995. MR 98c:43001
  • 14. H. Führ and M. Mayer,Continuous wavelet transforms from semidirect products: Cyclic representations and Plancherel measure, J. Fourier Anal. Appl. 8 (2002), 375-397.
  • 15. H. Führ, Admissible vectors for the regular representation, Proc. Amer. Math. Soc. 130 (2002), 2959-2970.
  • 16. S. A. Gaal, Linear Analysis and Representation Theory, Springer-Verlag, Berlin, 1973. MR 56:5777
  • 17. A. S. Holevo, On a generalization of canonical quantization, Math. USSR Izvestiya 28 (1986), 175-188. MR 87k:22006
  • 18. A. S. Holevo, Probabilistic and Statistical Aspects of Quantum Theory, North Holland, Amsterdam, 1982. MR 85i:81038a
  • 19. J. R. Klauder, Continuous representation theory I: postulates of continuous representation theory, J. Math. Phys. 4 (1963), 1055-1058. MR 27:2779
  • 20. G. W. Mackey, Imprimitivity for representations of locally compact groups I, Proc. Natl. Acad. Sci. U.S.A. 35 (1949), 537-545. MR 11:158b
  • 21. C. C. Moore, On the Frobenius reciprocity theorem for locally compact groups, Pacific J. Math. 12 (1962), 359-365. MR 25:5134
  • 22. H. Moscovici and A. Verona, Coherent states and square integrable representations, Ann. Inst. Henri Poincaré 29 (1978), 139-156. MR 80d:22016
  • 23. H. Neumann, Transformation properties of observables, Helv. Phys. Acta 45 (1972), 811-819. MR 53:7254
  • 24. B. Orsted, Induced representations and a new proof of the imprimitivity theorem, J. Funct. Anal. 31, 355-359 (1979). MR 80d:22007
  • 25. A. Perelomov, Generalized Coherent States and Their Applications, Springer-Verlag, Berlin, 1986. MR 87m:22035
  • 26. N. K. S. Poulsen, Regularity Aspects of Infinite Dimensional Representations of Lie Groups, Ph. D. Thesis, M.I.T. Cambridge, Mass., 1970.
  • 27. N. K. S. Poulsen, On $C^\infty$-vectors and intertwining bilinear forms for representations of Lie groups, J. Funct. Anal. 9 (1972), 87-120. MR 46:9239
  • 28. B. Sz-Nagy, Extensions of Linear Transformations in Hilbert Space Which Extend Beyond this Space, Appendix to F. Riesz, B. Sz-Nagy, Functional Analyis, Frederick Ungar, New York, 1960. MR 16:837a; MR 22:8338
  • 29. D. J. Rowe, G. Rosensteel, and R. Gilmore, Vector coherent state representation theory, J. Math. Phys. 32 (1991), 2787-2791. MR 87a:81069
  • 30. F. E. Schroeck, Quantum Mechanics on Phase Space, Kluwer Academic Publishers, Dordrecht, 1996. MR 97j:81004
  • 31. H. Scutaru, Coherent states and induced representations, Lett. Math. Phys. 2 (1977), 101-107. MR 58:22406
  • 32. W. F. Stinespring, Positive functions on $C^*$-algebras, Proc. Amer. Math. Soc. 6 (1955), 211-216. MR 16:1033b
  • 33. G. Warner, Harmonic Analysis on Semi-Simple Lie Groups I, Springer-Verlag, Berlin, 1972. MR 58:16979

Similar Articles

Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 43A32, 43A85, 42C40

Retrieve articles in all journals with MSC (2000): 43A32, 43A85, 42C40

Additional Information

G. Cassinelli
Affiliation: Dipartimento di Fisica, Università di Genova, I.N.F.N., Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy

E. De Vito
Affiliation: Dipartimento di Matematica, Università di Modena, Via Campi 213/B, 41100 Modena, Italy and I.N.F.N., Sezione di Genova, Via Dodecaneso 33, 16146 Genova, Italy

Keywords: Square-integrable representation, frame, localisation observable
Received by editor(s): November 15, 2001
Received by editor(s) in revised form: October 11, 2002
Published electronically: December 4, 2002
Article copyright: © Copyright 2002 American Mathematical Society