Oscillation and variation for singular integrals in higher dimensions
HTML articles powered by AMS MathViewer
- by James T. Campbell, Roger L. Jones, Karin Reinhold and Máté Wierdl
- Trans. Amer. Math. Soc. 355 (2003), 2115-2137
- DOI: https://doi.org/10.1090/S0002-9947-02-03189-6
- Published electronically: November 14, 2002
- PDF | Request permission
Abstract:
In this paper we continue our investigations of square function inequalities in harmonic analysis. Here we investigate oscillation and variation inequalities for singular integral operators in dimensions $d \geq 1$. Our estimates give quantitative information on the speed of convergence of truncations of a singular integral operator, including upcrossing and $\lambda$ jump inequalities.References
- Mustafa A. Akcoglu, Roger L. Jones, and Peter O. Schwartz, Variation in probability, ergodic theory and analysis, Illinois J. Math. 42 (1998), no. 1, 154–177. MR 1492045
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- José Felipe Voloch, Jacobians of curves over finite fields, Rocky Mountain J. Math. 30 (2000), no. 2, 755–759. MR 1787011, DOI 10.1216/rmjm/1022009294
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- Michael Christ and José Luis Rubio de Francia, Weak type $(1,1)$ bounds for rough operators. II, Invent. Math. 93 (1988), no. 1, 225–237. MR 943929, DOI 10.1007/BF01393693
- Robert A. Fefferman, A theory of entropy in Fourier analysis, Adv. in Math. 30 (1978), no. 3, 171–201. MR 520232, DOI 10.1016/0001-8708(78)90036-1
- Roger L. Jones, Iosif V. Ostrovskii, and Joseph M. Rosenblatt, Square functions in ergodic theory, Ergodic Theory Dynam. Systems 16 (1996), no. 2, 267–305. MR 1389625, DOI 10.1017/S0143385700008816
- Roger L. Jones, Robert Kaufman, Joseph M. Rosenblatt, and Máté Wierdl, Oscillation in ergodic theory, Ergodic Theory Dynam. Systems 18 (1998), no. 4, 889–935. MR 1645330, DOI 10.1017/S0143385798108349
- R. Jones, J. Rosenblatt, and M. Wierdl, Oscillation in ergodic theory: higher dimensional results, preprint, to appear in Israel J. of Math.
- A. W. Knapp and E. M. Stein, Intertwining operators for semisimple groups, Ann. of Math. (2) 93 (1971), 489–578. MR 460543, DOI 10.2307/1970887
- Karl Petersen, Another proof of the existence of the ergodic Hilbert transform, Proc. Amer. Math. Soc. 88 (1983), no. 1, 39–43. MR 691275, DOI 10.1090/S0002-9939-1983-0691275-2
- Jinghua Qian, The $p$-variation of partial sum processes and the empirical process, Ann. Probab. 26 (1998), no. 3, 1370–1383. MR 1640349, DOI 10.1214/aop/1022855756
- M. Riesz, Sur les fonctions conjugées, Math. Zeit. 27 (1927) , 218-244.
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- E. M. Stein and S. Wainger, Discrete analogues of singular Radon transforms, Bull. Amer. Math. Soc. (N.S.) 23 (1990), no. 2, 537–544. MR 1056560, DOI 10.1090/S0273-0979-1990-15973-7
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Stephen Wainger, Discrete analogues of singular and maximal Radon transforms, Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998), 1998, pp. 743–753. MR 1648122
Bibliographic Information
- James T. Campbell
- Affiliation: Department of Mathematical Sciences, Dunn Hall 373, University of Memphis, Memphis, Tennessee 38152
- Email: jtc@campbeljpc2.msci.memphis.edu
- Roger L. Jones
- Affiliation: Department of Mathematics, DePaul University, 2219 N. Kenmore, Chicago Illinois 60614
- Email: rjones@condor.depaul.edu
- Karin Reinhold
- Affiliation: Department of Mathematics, University at Albany, SUNY, 1400 Washington Ave., Albany, New York 12222
- MR Author ID: 324489
- Email: reinhold@csc.albany.edu
- Máté Wierdl
- Affiliation: Department of Mathematical Sciences, Dunn Hall 373, University of Memphis, Memphis, Tennessee 38152
- Email: mw@moni.msci.memphis.edu
- Received by editor(s): April 4, 2002
- Received by editor(s) in revised form: August 19, 2002
- Published electronically: November 14, 2002
- Additional Notes: The second author was partially supported by NSF Grant DMS—9302012
The fourth author was partially supported by NSF Grant DMS—9500577 - © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 2115-2137
- MSC (2000): Primary 42B25; Secondary 40A30
- DOI: https://doi.org/10.1090/S0002-9947-02-03189-6
- MathSciNet review: 1953540