Non-solvability for a class of left-invariant second-order differential operators on the Heisenberg group
HTML articles powered by AMS MathViewer
- by Detlef Müller and Marco M. Peloso
- Trans. Amer. Math. Soc. 355 (2003), 2047-2064
- DOI: https://doi.org/10.1090/S0002-9947-02-03232-4
- Published electronically: December 18, 2002
- PDF | Request permission
Abstract:
We study the question of local solvability for second-order, left-invariant differential operators on the Heisenberg group $\mathbb {H}_n$, of the form \[ \mathcal {P}_\Lambda = \sum _{i,j=1}^{n} \lambda _{ij}X_i Y_j={ }^t X\Lambda Y, \] where $\Lambda =(\lambda _{ij})$ is a complex $n\times n$ matrix. Such operators never satisfy a cone condition in the sense of Sjöstrand and Hörmander. We may assume that $\mathcal {P}_\Lambda$ cannot be viewed as a differential operator on a lower-dimensional Heisenberg group. Under the mild condition that $\operatorname {Re}\Lambda ,$ $\operatorname {Im}\Lambda$ and their commutator are linearly independent, we show that $\mathcal {P}_\Lambda$ is not locally solvable, even in the presence of lower-order terms, provided that $n\ge 7$. In the case $n=3$ we show that there are some operators of the form described above that are locally solvable. This result extends to the Heisenberg group $\mathbb {H}_3$ a phenomenon first observed by Karadzhov and Müller in the case of $\mathbb {H}_2.$ It is interesting to notice that the analysis of the exceptional operators for the case $n=3$ turns out to be more elementary than in the case $n=2.$ When $3\le n\le 6$ the analysis of these operators seems to become quite complex, from a technical point of view, and it remains open at this time.References
- Richard Beals and Charles Fefferman, On local solvability of linear partial differential equations, Ann. of Math. (2) 97 (1973), 482–498. MR 352746, DOI 10.2307/1970832
- Louis Boutet de Monvel, Alain Grigis, and Bernard Helffer, Parametrixes d’opérateurs pseudo-différentiels à caractéristiques multiples, Journées: Équations aux Dérivées Partielles de Rennes (1975), Astérisque, No. 34-35, Soc. Math. France, Paris, 1976, pp. 93–121 (French). MR 0493005
- Saunders Mac Lane and Garrett Birkhoff, Algebra, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1967. MR 0214415
- L. Corwin and L. P. Rothschild, Necessary conditions for local solvability of homogeneous left invariant differential operators on nilpotent Lie groups, Acta Math. 147 (1981), no. 3-4, 265–288. MR 639041, DOI 10.1007/BF02392875
- Gerald B. Folland, Harmonic analysis in phase space, Annals of Mathematics Studies, vol. 122, Princeton University Press, Princeton, NJ, 1989. MR 983366, DOI 10.1515/9781400882427
- V. V. Grušin, Extension of smoothness to solutions of differential equations of smooth type, Dokl. Akad. Nauk SSSR 148 (1963), 1241–1244 (Russian). MR 0145182
- B. Helffer and J. Nourrigat, Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué, Comm. Partial Differential Equations 4 (1979), no. 8, 899–958 (French). MR 537467, DOI 10.1080/03605307908820115
- Lars Hörmander, Differential operators of principal type, Math. Ann. 140 (1960), 124–146. MR 130574, DOI 10.1007/BF01360085
- Lars Hörmander, Differential equations without solutions, Math. Ann. 140 (1960), 169–173. MR 147765, DOI 10.1007/BF01361142
- Lars Hörmander, A class of hypoelliptic pseudodifferential operators with double characteristics, Math. Ann. 217 (1975), no. 2, 165–188. MR 377603, DOI 10.1007/BF01351297
- Georgi E. Karadzhov and Detlef Müller, A remarkable class of second order differential operators on the Heisenberg group $\Bbb H_2$, Math. Ann. 320 (2001), no. 4, 731–755. MR 1857137, DOI 10.1007/PL00004493
- Pierre Lévy-Bruhl, Résolubilité locale et globale d’opérateurs invariants du second ordre sur des groupes de Lie nilpotents, Bull. Sci. Math. (2) 104 (1980), no. 4, 369–391 (French, with English summary). MR 602406
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Detlef Müller, Marco M. Peloso, and Fulvio Ricci, On local solvability for complex coefficient differential operators on the Heisenberg group, J. Reine Angew. Math. 513 (1999), 181–234. MR 1713324, DOI 10.1515/crll.1999.060
- D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups. II, J. Funct. Anal. 108 (1992), no. 2, 296–346. MR 1176678, DOI 10.1016/0022-1236(92)90027-G
- Detlef Müller and Fulvio Ricci, Solvability for a class of doubly characteristic differential operators on $2$-step nilpotent groups, Ann. of Math. (2) 143 (1996), no. 1, 1–49. MR 1370756, DOI 10.2307/2118651
- —, Solvability of second-order left-invariant differential operators on the Heisenberg group satisfying a cone condition, J. Analyse Math., to appear.
- Detlef Müller and Zhenqiu Zhang, A class of solvable non-homogeneous differential operators on the Heisenberg group, Studia Math. 148 (2001), no. 1, 87–96. MR 1881442, DOI 10.4064/sm148-1-8
- Walter Leighton and W. T. Scott, A general continued fraction expansion, Bull. Amer. Math. Soc. 45 (1939), 596–605. MR 41, DOI 10.1090/S0002-9904-1939-07046-8
- Linda Preiss Rothschild, Local solvability of second order differential operators on nilpotent Lie groups, Ark. Mat. 19 (1981), no. 2, 145–175. MR 650491, DOI 10.1007/BF02384475
- Johannes Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Ark. Mat. 12 (1974), 85–130. MR 352749, DOI 10.1007/BF02384749
- Franz Rádl, Über die Teilbarkeitsbedingungen bei den gewöhnlichen Differential polynomen, Math. Z. 45 (1939), 429–446 (German). MR 82, DOI 10.1007/BF01580293
Bibliographic Information
- Detlef Müller
- Affiliation: Mathematisches Seminar, C.A.-Universität Kiel, Ludewig-Meyn-Strasse 4, D-24098 Kiel, Germany
- Email: mueller@math.uni-kiel.de
- Marco M. Peloso
- Affiliation: Dipartimento di Matematica, Corso Duca degli Abruzzi 24, Politecnico di Torino, 10129 Torino, Italy
- Email: peloso@calvino.polito.it
- Received by editor(s): October 8, 2002
- Published electronically: December 18, 2002
- Additional Notes: We acknowledge the support for this work by the European Commission through the European TMR network “Harmonic Analysis" and the IHP Network HARP “Harmonic Analysis and Related Problems".
- © Copyright 2002 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 2047-2064
- MSC (2000): Primary 35A05, 35D05, 43A80
- DOI: https://doi.org/10.1090/S0002-9947-02-03232-4
- MathSciNet review: 1953537