Castelnuovo-Mumford regularity and extended degree
HTML articles powered by AMS MathViewer
- by Maria Evelina Rossi, Ngô Viêt Trung and Giuseppe Valla
- Trans. Amer. Math. Soc. 355 (2003), 1773-1786
- DOI: https://doi.org/10.1090/S0002-9947-03-03185-4
- Published electronically: January 13, 2003
- PDF | Request permission
Abstract:
Our main result shows that the Castelnuovo-Mumford regularity of the tangent cone of a local ring $A$ is effectively bounded by the dimension and any extended degree of $A$. From this it follows that there are only a finite number of Hilbert-Samuel functions of local rings with given dimension and extended degree.References
- Dave Bayer and David Mumford, What can be computed in algebraic geometry?, Computational algebraic geometry and commutative algebra (Cortona, 1991) Sympos. Math., XXXIV, Cambridge Univ. Press, Cambridge, 1993, pp. 1–48. MR 1253986
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Luisa Rodrigues Doering, Tor Gunston, and Wolmer V. Vasconcelos, Cohomological degrees and Hilbert functions of graded modules, Amer. J. Math. 120 (1998), no. 3, 493–504. MR 1623400, DOI 10.1353/ajm.1998.0019
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- David Eisenbud and Shiro Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89–133. MR 741934, DOI 10.1016/0021-8693(84)90092-9
- D. Kirby, The reduction number of a one-dimensional local ring, J. London Math. Soc. (2) 10 (1975), no. 4, 471–481. MR 379483, DOI 10.1112/jlms/s2-10.4.471
- Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Vol. 225, Springer-Verlag, Berlin-New York, 1971 (French). Séminaire de Géométrie Algébrique du Bois-Marie 1966–1967 (SGA 6); Dirigé par P. Berthelot, A. Grothendieck et L. Illusie. Avec la collaboration de D. Ferrand, J. P. Jouanolou, O. Jussila, S. Kleiman, M. Raynaud et J. P. Serre. MR 0354655
- Lê Tuân Hoa, Reduction numbers of equimultiple ideals, J. Pure Appl. Algebra 109 (1996), no. 2, 111–126. MR 1387736, DOI 10.1016/0022-4049(95)00084-4
- Thomas Marley, The reduction number of an ideal and the local cohomology of the associated graded ring, Proc. Amer. Math. Soc. 117 (1993), no. 2, 335–341. MR 1112496, DOI 10.1090/S0002-9939-1993-1112496-7
- David Mumford, Lectures on curves on an algebraic surface, Annals of Mathematics Studies, No. 59, Princeton University Press, Princeton, N.J., 1966. With a section by G. M. Bergman. MR 0209285, DOI 10.1515/9781400882069
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- M. E. Rossi, G. Valla, and W. V. Vasconcelos, Maximal Hilbert functions, Results Math. 39 (2001), no. 1-2, 99–114. MR 1817403, DOI 10.1007/BF03322678
- V. Srinivas and Vijaylaxmi Trivedi, A finiteness theorem for the Hilbert functions of complete intersection local rings, Math. Z. 225 (1997), no. 4, 543–558. MR 1466401, DOI 10.1007/PL00004322
- V. Srinivas and V. Trivedi, On the Hilbert function of a Cohen-Macaulay local ring, J. Algebraic Geom. 6 (1997), no. 4, 733–751. MR 1487234
- Vijaylaxmi Trivedi, Hilbert functions, Castelnuovo-Mumford regularity and uniform Artin-Rees numbers, Manuscripta Math. 94 (1997), no. 4, 485–499. MR 1484640, DOI 10.1007/BF02677868
- Vijaylaxmi Trivedi, Finiteness of Hilbert functions for generalized Cohen-Macaulay modules, Comm. Algebra 29 (2001), no. 2, 805–813. MR 1842002, DOI 10.1081/AGB-100001545
- Ngô Viêt Trung, Absolutely superficial sequences, Math. Proc. Cambridge Philos. Soc. 93 (1983), no. 1, 35–47. MR 684272, DOI 10.1017/S0305004100060308
- Ngô Việt Trung, Reduction exponent and degree bound for the defining equations of graded rings, Proc. Amer. Math. Soc. 101 (1987), no. 2, 229–236. MR 902533, DOI 10.1090/S0002-9939-1987-0902533-1
- Wolmer V. Vasconcelos, The homological degree of a module, Trans. Amer. Math. Soc. 350 (1998), no. 3, 1167–1179. MR 1458335, DOI 10.1090/S0002-9947-98-02127-8
- Wolmer V. Vasconcelos, Cohomological degrees of graded modules, Six lectures on commutative algebra (Bellaterra, 1996) Progr. Math., vol. 166, Birkhäuser, Basel, 1998, pp. 345–392. MR 1648669
Bibliographic Information
- Maria Evelina Rossi
- Affiliation: Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16132 Genova, Italy
- MR Author ID: 150830
- ORCID: 0000-0001-7039-5296
- Email: rossim@dima.unige.it
- Ngô Viêt Trung
- Affiliation: Institute of Mathematics, Box 631, Bò Hô, 10000 Hanoi, Vietnam
- MR Author ID: 207806
- Email: nvtrung@thevinh.ncst.ac.vn
- Giuseppe Valla
- Affiliation: Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, 16132 Genova, Italy
- Email: valla@dima.unige.it
- Received by editor(s): August 9, 2002
- Published electronically: January 13, 2003
- Additional Notes: The first and third authors are partially supported by MPI of Italy. The second author is partially supported by the National Basic Research Program of Vietnam
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 1773-1786
- MSC (2000): Primary 13A30, 13D45
- DOI: https://doi.org/10.1090/S0002-9947-03-03185-4
- MathSciNet review: 1953524