Functorial Hodge identities and quantization
HTML articles powered by AMS MathViewer
- by M. J. Slupinski
- Trans. Amer. Math. Soc. 355 (2003), 2011-2046
- DOI: https://doi.org/10.1090/S0002-9947-03-03208-2
- Published electronically: January 10, 2003
- PDF | Request permission
Abstract:
By a uniform abstract procedure, we obtain integrated forms of the classical Hodge identities for Riemannian, Kähler and hyper-Kähler manifolds, as well as of the analogous identities for metrics of arbitrary signature. These identities depend only on the type of geometry and, for each of the three types of geometry, define a multiplicative functor from the corresponding category of real, graded, flat vector bundles to the category of infinite-dimensional $\mathbf {Z}_{2}$-projective representations of an algebraic structure. We define new multiplicative numerical invariants of closed Kähler and hyper-Kähler manifolds which are invariant under deformations of the metric.References
- M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl, suppl. 1, 3–38. MR 167985, DOI 10.1016/0040-9383(64)90003-5
- Bernstein, J. — Lectures on SUSY (notes by P. Deligne and J. Morgan) in ‘Quantum Fields and Strings: a course for mathematicians’, Vol 1 (ed P. Deligne et al) – American Mathematical Society, Providence, RI, 1999.
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8, DOI 10.1017/S0370164600012281
- J. M. Figueroa-O’Farrill, C. Köhl, and B. Spence, Supersymmetry and the cohomology of (hyper)Kähler manifolds, Nuclear Phys. B 503 (1997), no. 3, 614–626. MR 1482737, DOI 10.1016/S0550-3213(97)00548-8
- Leonard Eugene Dickson, New First Course in the Theory of Equations, John Wiley & Sons, Inc., New York, 1939. MR 0000002
- Roger Howe, Dual pairs in physics: harmonic oscillators, photons, electrons, and singletons, Applications of group theory in physics and mathematical physics (Chicago, 1982) Lectures in Appl. Math., vol. 21, Amer. Math. Soc., Providence, RI, 1985, pp. 179–207. MR 789290
- P. Erdös and T. Grünwald, On polynomials with only real roots, Ann. of Math. (2) 40 (1939), 537–548. MR 7, DOI 10.2307/1968938
- Richard S. Palais, Seminar on the Atiyah-Singer index theorem, Annals of Mathematics Studies, No. 57, Princeton University Press, Princeton, N.J., 1965. With contributions by M. F. Atiyah, A. Borel, E. E. Floyd, R. T. Seeley, W. Shih and R. Solovay. MR 0198494, DOI 10.1515/9781400882045
- M. J. Slupinski, Dual pairs in $\textrm {Pin}(p,q)$ and Howe correspondences for the spin representation, J. Algebra 202 (1998), no. 2, 512–540. MR 1617612, DOI 10.1006/jabr.1997.7279
- Winfried Scharlau, Quadratic and Hermitian forms, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 270, Springer-Verlag, Berlin, 1985. MR 770063, DOI 10.1007/978-3-642-69971-9
- M. S. Verbitskiĭ, Action of the Lie algebra of $\textrm {SO}(5)$ on the cohomology of a hyper-Kähler manifold, Funktsional. Anal. i Prilozhen. 24 (1990), no. 3, 70–71 (Russian); English transl., Funct. Anal. Appl. 24 (1990), no. 3, 229–230 (1991). MR 1082036, DOI 10.1007/BF01077967
- Garrett Birkhoff and Morgan Ward, A characterization of Boolean algebras, Ann. of Math. (2) 40 (1939), 609–610. MR 9, DOI 10.2307/1968945
- Weil, A. — Variétés Kählériennes. – Hermann, Paris, 1958.
- Edward Witten, Homework, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 609–717. MR 1701609
Bibliographic Information
- M. J. Slupinski
- Affiliation: Université de Louis Pasteur et CNRS (URA 01), 7 rue René Descartes, 67084 Strasbourg Cedex, France
- MR Author ID: 163750
- Email: slupins@math.u-strasbg.fr
- Received by editor(s): April 17, 2002
- Received by editor(s) in revised form: July 2, 2002
- Published electronically: January 10, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 2011-2046
- MSC (2000): Primary 22E99, 53C50, 53C55, 53C99
- DOI: https://doi.org/10.1090/S0002-9947-03-03208-2
- MathSciNet review: 1953536