Heat kernels on metric measure spaces and an application to semilinear elliptic equations
HTML articles powered by AMS MathViewer
- by Alexander Grigor’yan, Jiaxin Hu and Ka-Sing Lau PDF
- Trans. Amer. Math. Soc. 355 (2003), 2065-2095
Abstract:
We consider a metric measure space $(M,d,\mu )$ and a heat kernel $p_{t}(x,y)$ on $M$ satisfying certain upper and lower estimates, which depend on two parameters $\alpha$ and $\beta$. We show that under additional mild assumptions, these parameters are determined by the intrinsic properties of the space $(M,d,\mu )$. Namely, $\alpha$ is the Hausdorff dimension of this space, whereas $\beta$, called the walk dimension, is determined via the properties of the family of Besov spaces $W^{\sigma ,2}$ on $M$. Moreover, the parameters $\alpha$ and $\beta$ are related by the inequalities $2\leq \beta \leq \alpha +1$.
We prove also the embedding theorems for the space $W^{\beta /2,2}$, and use them to obtain the existence results for weak solutions to semilinear elliptic equations on $M$ of the form \begin{equation*} -\mathcal {L}u+f(x,u)=g(x), \end{equation*} where $\mathcal {L}$ is the generator of the semigroup associated with $p_{t}$.
The framework in this paper is applicable for a large class of fractal domains, including the generalized Sierpiński carpet in ${\mathbb {R}^{n}}$.
References
- Antonio Ambrosetti and Giovanni Prodi, A primer of nonlinear analysis, Cambridge Studies in Advanced Mathematics, vol. 34, Cambridge University Press, Cambridge, 1993. MR 1225101
- N. Aronszajn and K. T. Smith, Theory of Bessel potentials. I, Ann. Inst. Fourier (Grenoble) 11 (1961), 385–475 (English, with French summary). MR 143935, DOI 10.5802/aif.116
- Martin T. Barlow, Diffusions on fractals, Lectures on probability theory and statistics (Saint-Flour, 1995) Lecture Notes in Math., vol. 1690, Springer, Berlin, 1998, pp. 1–121. MR 1668115, DOI 10.1007/BFb0092537
- —, Which values of the volume growth and escape time exponents are possible for graphs?, preprint (2001).
- Martin T. Barlow and Richard F. Bass, Brownian motion and harmonic analysis on Sierpinski carpets, Canad. J. Math. 51 (1999), no. 4, 673–744. MR 1701339, DOI 10.4153/CJM-1999-031-4
- Marco Biroli and Umberto Mosco, Sobolev and isoperimetric inequalities for Dirichlet forms on homogeneous spaces, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 6 (1995), no. 1, 37–44 (English, with English and Italian summaries). MR 1340280
- E. A. Carlen, S. Kusuoka, and D. W. Stroock, Upper bounds for symmetric Markov transition functions, Ann. Inst. H. Poincaré Probab. Statist. 23 (1987), no. 2, suppl., 245–287 (English, with French summary). MR 898496
- Edward Brian Davies, One-parameter semigroups, London Mathematical Society Monographs, vol. 15, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1980. MR 591851
- E. B. Davies, Heat kernels and spectral theory, Cambridge Tracts in Mathematics, vol. 92, Cambridge University Press, Cambridge, 1990. MR 1103113
- Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
- Pat J. Fitzsimmons, Ben M. Hambly, and Takashi Kumagai, Transition density estimates for Brownian motion on affine nested fractals, Comm. Math. Phys. 165 (1994), no. 3, 595–620. MR 1301625, DOI 10.1007/BF02099425
- Masatoshi Fukushima, Y\B{o}ichi Ōshima, and Masayoshi Takeda, Dirichlet forms and symmetric Markov processes, De Gruyter Studies in Mathematics, vol. 19, Walter de Gruyter & Co., Berlin, 1994. MR 1303354, DOI 10.1515/9783110889741
- Alexander Grigor′yan, Estimates of heat kernels on Riemannian manifolds, Spectral theory and geometry (Edinburgh, 1998) London Math. Soc. Lecture Note Ser., vol. 273, Cambridge Univ. Press, Cambridge, 1999, pp. 140–225. MR 1736868, DOI 10.1017/CBO9780511566165.008
- A. Grigor’yan and A. Telcs, Sub-Gaussian estimates of heat kernels on infinite graphs, Duke Math. J. 109 (2001), 451–510.
- Piotr Hajłasz and Pekka Koskela, Sobolev met Poincaré, Mem. Amer. Math. Soc. 145 (2000), no. 688, x+101. MR 1683160, DOI 10.1090/memo/0688
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- J. Hu and K. S. Lau, Riesz potentials and Laplacians on fractals, preprint (2001).
- Alf Jonsson, Brownian motion on fractals and function spaces, Math. Z. 222 (1996), no. 3, 495–504. MR 1400205, DOI 10.1007/PL00004543
- I. Kuzin and S. Pohozaev, Entire solutions of semilinear elliptic equations, Progress in Nonlinear Differential Equations and their Applications, vol. 33, Birkhäuser Verlag, Basel, 1997. MR 1479168
- Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
- Roberto A. Macías and Carlos Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257–270. MR 546295, DOI 10.1016/0001-8708(79)90012-4
- Katarzyna Pietruska-Pałuba, Some function spaces related to the Brownian motion on simple nested fractals, Stochastics Stochastics Rep. 67 (1999), no. 3-4, 267–285. MR 1729479, DOI 10.1080/17442509908834214
- Katarzyna Pietruska-Pałuba, On function spaces related to fractional diffusions on $d$-sets, Stochastics Stochastics Rep. 70 (2000), no. 3-4, 153–164. MR 1800954, DOI 10.1080/17442500008834250
- Paul H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series in Mathematics, vol. 65, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 845785, DOI 10.1090/cbms/065
- Andrzej Stós, Symmetric $\alpha$-stable processes on $d$-sets, Bull. Polish Acad. Sci. Math. 48 (2000), no. 3, 237–245. MR 1779007
- A. Telcs, Random walks on graphs, electric networks and fractals, Probab. Theory Related Fields 82 (1989), no. 3, 435–449. MR 1001523, DOI 10.1007/BF00339997
- M. M. Vainberg, Variational methods for the study of nonlinear operators, Holden-Day, Inc., San Francisco, Calif.-London-Amsterdam, 1964. With a chapter on Newton’s method by L. V. Kantorovich and G. P. Akilov. Translated and supplemented by Amiel Feinstein. MR 0176364
- N. Th. Varopoulos, Hardy-Littlewood theory for semigroups, J. Funct. Anal. 63 (1985), no. 2, 240–260. MR 803094, DOI 10.1016/0022-1236(85)90087-4
- Kôsaku Yosida, Functional analysis, 6th ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 123, Springer-Verlag, Berlin-New York, 1980. MR 617913
Additional Information
- Alexander Grigor’yan
- Affiliation: Department of Mathematics, Imperial College, London, SW7 2BZ, United Kingdom and The Institute of Mathematical Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
- MR Author ID: 203816
- Email: a.grigoryan@ic.ac.uk
- Jiaxin Hu
- Affiliation: Department of Mathematical Sciences, Tsinghua University, Beijing 100084 China and Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
- Email: jxhu@math.tsinghua.edu.cn
- Ka-Sing Lau
- Affiliation: Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
- MR Author ID: 190087
- Email: kslau@math.cuhk.edu.hk
- Received by editor(s): July 23, 2002
- Published electronically: January 10, 2003
- Additional Notes: The first author was partially supported by a visiting grant of the Institute of Mathematical Sciences of CUHK (the Chinese University of Hong Kong). The second author was supported by a Postdoctoral Fellowship from CUHK. The third author was partially supported by a HKRGC grant at CUHK
- © Copyright 2003 by A. Grigor’yan, J. Hu, and K.-S. Lau
- Journal: Trans. Amer. Math. Soc. 355 (2003), 2065-2095
- MSC (2000): Primary 60J35; Secondary 28A80, 35J60
- DOI: https://doi.org/10.1090/S0002-9947-03-03211-2
- MathSciNet review: 1953538