Central Kähler metrics
HTML articles powered by AMS MathViewer
- by Gideon Maschler
- Trans. Amer. Math. Soc. 355 (2003), 2161-2182
- DOI: https://doi.org/10.1090/S0002-9947-03-03161-1
- Published electronically: January 31, 2003
- PDF | Request permission
Abstract:
The determinant of the Ricci endomorphism of a Kähler metric is called its central curvature, a notion well-defined even in the Riemannian context. This work investigates two types of Kähler metrics in which this curvature potential gives rise to a potential for a gradient holomorphic vector field. These metric types generalize the Kähler-Einstein notion as well as that of Bando and Mabuchi (1986). Whenever possible the central curvature is treated in analogy with the scalar curvature, and the metrics are compared with the extremal Kähler metrics of Calabi. An analog of the Futaki invariant is employed, both invariants belonging to a family described in the language of holomorphic equivariant cohomology. It is shown that one of the metric types realizes the minimum of an $L^2$ functional defined on the space of Kähler metrics in a given Kähler class. For metrics of constant central curvature, results are obtained regarding existence, uniqueness and a partial classification in complex dimension two. Consequently, on a manifold of Fano type, such metrics and Kähler-Einstein metrics can only exist concurrently. An existence result for the case of non-constant central curvature is stated, and proved in a sequel to this work.References
- Thierry Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. (2) 102 (1978), no. 1, 63–95 (French, with English summary). MR 494932
- Aldo Andreotti and Hans Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193–259 (French). MR 150342, DOI 10.24033/bsmf.1581
- S. Bando, An obstruction for Chern class forms to be harmonic, unpublished.
- Shigetoshi Bando and Toshiki Mabuchi, On some integral invariants on complex manifolds. I, Proc. Japan Acad. Ser. A Math. Sci. 62 (1986), no. 5, 197–200. MR 854218
- J.-M. Coron, On the singularities of harmonic maps from a domain in $\textbf {R}^3$ into $S^2$, Séminaire sur les équations aux dérivées partielles 1986–1987, École Polytech., Palaiseau, 1987, pp. Exp. No. XII, 15. MR 920030
- Charles Hopkins, Rings with minimal condition for left ideals, Ann. of Math. (2) 40 (1939), 712–730. MR 12, DOI 10.2307/1968951
- A. R. Collar, On the reciprocation of certain matrices, Proc. Roy. Soc. Edinburgh 59 (1939), 195–206. MR 8, DOI 10.1017/S0370164600012281
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Raoul Bott, Vector fields and characteristic numbers, Michigan Math. J. 14 (1967), 231–244. MR 211416
- Raoul Bott, A residue formula for holomorphic vector-fields, J. Differential Geometry 1 (1967), 311–330. MR 232405
- M. Braverman, private communication.
- Nelson Dunford, A mean ergodic theorem, Duke Math. J. 5 (1939), 635–646. MR 98
- Eugenio Calabi, Extremal Kähler metrics, Seminar on Differential Geometry, Ann. of Math. Stud., vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 259–290. MR 645743
- Eugenio Calabi, Extremal Kähler metrics. II, Differential geometry and complex analysis, Springer, Berlin, 1985, pp. 95–114. MR 780039
- Huai-Dong Cao, Existence of gradient Kähler-Ricci solitons, Elliptic and parabolic methods in geometry (Minneapolis, MN, 1994) A K Peters, Wellesley, MA, 1996, pp. 1–16. MR 1417944
- James B. Carrell, A remark on the Grothendieck residue map, Proc. Amer. Math. Soc. 70 (1978), no. 1, 43–48. MR 492408, DOI 10.1090/S0002-9939-1978-0492408-1
- Jean-Pierre Demailly, Holomorphic Morse inequalities, Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989) Proc. Sympos. Pure Math., vol. 52, Amer. Math. Soc., Providence, RI, 1991, pp. 93–114. MR 1128538, DOI 10.1090/pspum/052.2/1128538
- Andrzej Derdziński, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compositio Math. 49 (1983), no. 3, 405–433. MR 707181
- Akira Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), no. 3, 225–258. MR 481142, DOI 10.1007/BF01403162
- A. Futaki, An obstruction to the existence of Einstein Kähler metrics, Invent. Math. 73 (1983), no. 3, 437–443. MR 718940, DOI 10.1007/BF01388438
- Akito Futaki, Kähler-Einstein metrics and integral invariants, Lecture Notes in Mathematics, vol. 1314, Springer-Verlag, Berlin, 1988. MR 947341, DOI 10.1007/BFb0078084
- Akito Futaki, On compact Kähler manifolds of constant scalar curvatures, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 8, 401–402. MR 726535
- Erich Rothe, Topological proofs of uniqueness theorems in the theory of differential and integral equations, Bull. Amer. Math. Soc. 45 (1939), 606–613. MR 93, DOI 10.1090/S0002-9904-1939-07048-1
- Akito Futaki and Toshiki Mabuchi, Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann. 301 (1995), no. 2, 199–210. MR 1314584, DOI 10.1007/BF01446626
- A. Futaki, T. Mabuchi, and Y. Sakane, Einstein-Kähler metrics with positive Ricci curvature, Kähler metric and moduli spaces, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 11–83. MR 1145246, DOI 10.2969/aspm/01820011
- Akito Futaki and Shigeyuki Morita, Invariant polynomials on compact complex manifolds, Proc. Japan Acad. Ser. A Math. Sci. 60 (1984), no. 10, 369–372. MR 778532
- Akito Futaki and Shigeyuki Morita, Invariant polynomials of the automorphism group of a compact complex manifold, J. Differential Geom. 21 (1985), no. 1, 135–142. MR 806707
- Akito Futaki and Kenji Tsuboi, Eta invariants and automorphisms of compact complex manifolds, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 251–270. MR 1145258, DOI 10.2969/aspm/01810251
- Phillip Griffiths and Joseph Harris, Principles of algebraic geometry, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York, 1978. MR 507725
- Daniel Zhuang-Dan Guan, Quasi-Einstein metrics, Internat. J. Math. 6 (1995), no. 3, 371–379. MR 1327154, DOI 10.1142/S0129167X95000110
- Andrew D. Hwang, Extremal Kähler metrics and the Calabi energy, Proc. Japan Acad. Ser. A Math. Sci. 71 (1995), no. 6, 128–129. MR 1344665
- Andrew D. Hwang, On the Calabi energy of extremal Kähler metrics, Internat. J. Math. 6 (1995), no. 6, 825–830. MR 1353997, DOI 10.1142/S0129167X95000365
- Andrew D. Hwang, On existence of Kähler metrics with constant scalar curvature, Osaka J. Math. 31 (1994), no. 3, 561–595. MR 1309403
- A. D. Hwang and G. Maschler, Central Kähler metrics with non-constant central curvature, Trans. Amer. Math. Soc. 355 (2003), 2183–2203.
- Andrew D. Hwang and Santiago R. Simanca, Distinguished Kähler metrics on Hirzebruch surfaces, Trans. Amer. Math. Soc. 347 (1995), no. 3, 1013–1021. MR 1246528, DOI 10.1090/S0002-9947-1995-1246528-9
- Andrew D. Hwang and Santiago R. Simanca, Extremal Kähler metrics on Hirzebruch surfaces which are locally conformally equivalent to Einstein metrics, Math. Ann. 309 (1997), no. 1, 97–106. MR 1467648, DOI 10.1007/s002080050104
- Shoshichi Kobayashi, Transformation groups in differential geometry, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1972 edition. MR 1336823
- Shoshichi Kobayashi, Differential geometry of complex vector bundles, Publications of the Mathematical Society of Japan, vol. 15, Princeton University Press, Princeton, NJ; Princeton University Press, Princeton, NJ, 1987. Kanô Memorial Lectures, 5. MR 909698, DOI 10.1515/9781400858682
- Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
- Norihito Koiso, On rotationally symmetric Hamilton’s equation for Kähler-Einstein metrics, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 327–337. MR 1145263, DOI 10.2969/aspm/01810327
- Jacques Lafontaine, Courbure de Ricci et fonctionnelles critiques, C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), no. 12, 687–690 (French, with English summary). MR 688907
- Claude LeBrun, Einstein metrics on complex surfaces, Geometry and physics (Aarhus, 1995) Lecture Notes in Pure and Appl. Math., vol. 184, Dekker, New York, 1997, pp. 167–176. MR 1423163
- C. LeBrun and S. R. Simanca, Extremal Kähler metrics and complex deformation theory, Geom. Funct. Anal. 4 (1994), no. 3, 298–336. MR 1274118, DOI 10.1007/BF01896244
- Claude LeBrun and Michael Singer, Existence and deformation theory for scalar-flat Kähler metrics on compact complex surfaces, Invent. Math. 112 (1993), no. 2, 273–313. MR 1213104, DOI 10.1007/BF01232436
- André Lichnerowicz, Isométries et transformations analytiques d’une variété kählérienne compacte, Bull. Soc. Math. France 87 (1959), 427–437 (French). MR 114187, DOI 10.24033/bsmf.1537
- André Lichnerowicz, Variétés kähleriennes et première classe de Chern, J. Differential Geometry 1 (1967), 195–223 (French). MR 226561
- Kefeng Liu, Holomorphic equivariant cohomology, Math. Ann. 303 (1995), no. 1, 125–148. MR 1348359, DOI 10.1007/BF01460983
- Toshiki Mabuchi, An algebraic character associated with the Poisson brackets, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math., vol. 18, Academic Press, Boston, MA, 1990, pp. 339–358. MR 1145264, DOI 10.2969/aspm/01810339
- G. Maschler, Distinguished Kähler metrics and Equivariant Cohomological Invariants, thesis, State University of New York at Stony Brook, August 1997.
- Yozo Matsushima, Remarks on Kähler-Einstein manifolds, Nagoya Math. J. 46 (1972), 161–173. MR 303478, DOI 10.1017/S0027763000014847
- Jimmy Petean, Indefinite Kähler-Einstein metrics on compact complex surfaces, Comm. Math. Phys. 189 (1997), no. 1, 227–235. MR 1478537, DOI 10.1007/s002200050197
- Santiago R. Simanca, Precompactness of the Calabi energy, Internat. J. Math. 7 (1996), no. 2, 245–254. MR 1382725, DOI 10.1142/S0129167X96000141
- Yum Tong Siu, The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group, Ann. of Math. (2) 127 (1988), no. 3, 585–627. MR 942521, DOI 10.2307/2007006
- Gang Tian, Kähler-Einstein metrics on algebraic manifolds, Transcendental methods in algebraic geometry (Cetraro, 1994) Lecture Notes in Math., vol. 1646, Springer, Berlin, 1996, pp. 143–185. MR 1603624, DOI 10.1007/BFb0094304
- C. W. Tønnesen-Friedman, Extremal Kähler Metrics on Ruled Surfaces, Institut for Matematik og Datalogi Odense Universitet Preprint Nr. 36, 1997.
- Kenji Tsuboi, The lifted Futaki invariants and the $\textrm {Spin}^c$-Dirac operators, Osaka J. Math. 32 (1995), no. 2, 207–225. MR 1355741
- Kenji Tsuboi, On the integral invariants of Futaki-Morita and the determinant of elliptic operators, Far East J. Math. Sci. 5 (1997), no. 2, 305–319. MR 1465595
- Gang Tian and Shing-Tung Yau, Kähler-Einstein metrics on complex surfaces with $C_1>0$, Comm. Math. Phys. 112 (1987), no. 1, 175–203. MR 904143, DOI 10.1007/BF01217685
- Edward Witten, Supersymmetry and Morse theory, J. Differential Geometry 17 (1982), no. 4, 661–692 (1983). MR 683171
- Kentaro Yano, Sur un théorème de M. Matsushima, Nagoya Math. J. 12 (1957), 147–150 (French). MR 95978, DOI 10.1017/S0027763000022005
- M. Yotov, On the generalized Futaki invariant, electronic preprint math/9907055.
- Shing Tung Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. I, Comm. Pure Appl. Math. 31 (1978), no. 3, 339–411. MR 480350, DOI 10.1002/cpa.3160310304
- Wei Ping Zhang, A remark on a residue formula of Bott, Acta Math. Sinica (N.S.) 6 (1990), no. 4, 306–314. A Chinese summary appears in Acta Math. Sinica 34 (1991), no. 5, 718. MR 1078675, DOI 10.1007/BF02107963
Bibliographic Information
- Gideon Maschler
- Affiliation: Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3
- Email: maschler@math.toronto.edu
- Received by editor(s): November 1, 1999
- Published electronically: January 31, 2003
- Additional Notes: Partially supported by the Edmund Landau Center for research in Mathematical Analysis and Related Areas, sponsored by the Minerva Foundation (Germany).
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 2161-2182
- MSC (2000): Primary 53C55, 53C25, 58E11
- DOI: https://doi.org/10.1090/S0002-9947-03-03161-1
- MathSciNet review: 1973986