Contractive projections and operator spaces
HTML articles powered by AMS MathViewer
- by Matthew Neal and Bernard Russo
- Trans. Amer. Math. Soc. 355 (2003), 2223-2262
- DOI: https://doi.org/10.1090/S0002-9947-03-03233-1
- Published electronically: January 27, 2003
- PDF | Request permission
Abstract:
Parallel to the study of finite-dimensional Banach spaces, there is a growing interest in the corresponding local theory of operator spaces. We define a family of Hilbertian operator spaces $H_n^k$, $1\le k\le n$, generalizing the row and column Hilbert spaces $R_n$ and $C_n$, and we show that an atomic subspace $X\subset B(H)$ that is the range of a contractive projection on $B(H)$ is isometrically completely contractive to an $\ell ^\infty$-sum of the $H_n^k$ and Cartan factors of types 1 to 4. In particular, for finite-dimensional $X$, this answers a question posed by Oikhberg and Rosenthal. Explicit in the proof is a classification up to complete isometry of atomic w$^*$-closed $JW^*$-triples without an infinite-dimensional rank 1 w$^*$-closed ideal.References
- Jonathan Arazy and Yaakov Friedman, Contractive projections in $C_{1}$ and $C_{\infty }$, Mem. Amer. Math. Soc. 13 (1978), no. 200, iv+165. MR 481219, DOI 10.1090/memo/0200
- T. J. Barton, T. Dang, and G. Horn, Normal representations of Banach Jordan triple systems, Proc. Amer. Math. Soc. 102 (1988), no. 3, 551–555. MR 928978, DOI 10.1090/S0002-9939-1988-0928978-2
- T. Barton and Richard M. Timoney, Weak$^\ast$-continuity of Jordan triple products and its applications, Math. Scand. 59 (1986), no. 2, 177–191. MR 884654, DOI 10.7146/math.scand.a-12160
- David P. Blecher and Vern I. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), no. 2, 262–292. MR 1121615, DOI 10.1016/0022-1236(91)90042-4
- Ola Bratteli and Derek W. Robinson, Operator algebras and quantum-statistical mechanics. II, Texts and Monographs in Physics, Springer-Verlag, New York-Berlin, 1981. Equilibrium states. Models in quantum-statistical mechanics. MR 611508, DOI 10.1007/978-3-662-09089-3
- Man Duen Choi and Edward G. Effros, Injectivity and operator spaces, J. Functional Analysis 24 (1977), no. 2, 156–209. MR 0430809, DOI 10.1016/0022-1236(77)90052-0
- Erik Christensen and Allan M. Sinclair, Completely bounded isomorphisms of injective von Neumann algebras, Proc. Edinburgh Math. Soc. (2) 32 (1989), no. 2, 317–327. MR 1001129, DOI 10.1017/S0013091500028716
- T. Dang and Y. Friedman, Classification of $\textrm {JBW}^*$-triple factors and applications, Math. Scand. 61 (1987), no. 2, 292–330. MR 947480, DOI 10.7146/math.scand.a-12206
- Edward G. Effros and Zhong-Jin Ruan, On matricially normed spaces, Pacific J. Math. 132 (1988), no. 2, 243–264. MR 934168, DOI 10.2140/pjm.1988.132.243
- Edward G. Effros and Zhong-Jin Ruan, Operator spaces, London Mathematical Society Monographs. New Series, vol. 23, The Clarendon Press, Oxford University Press, New York, 2000. MR 1793753
- Edward G. Effros and Erling Størmer, Positive projections and Jordan structure in operator algebras, Math. Scand. 45 (1979), no. 1, 127–138. MR 567438, DOI 10.7146/math.scand.a-11830
- Yaakov Friedman and Bernard Russo, Contractive projections on operator triple systems, Math. Scand. 52 (1983), no. 2, 279–311. MR 702959, DOI 10.7146/math.scand.a-12007
- Yaakov Friedman and Bernard Russo, Solution of the contractive projection problem, J. Funct. Anal. 60 (1985), no. 1, 56–79. MR 780104, DOI 10.1016/0022-1236(85)90058-8
- Yaakov Friedman and Bernard Russo, Structure of the predual of a $JBW^\ast$-triple, J. Reine Angew. Math. 356 (1985), 67–89. MR 779376, DOI 10.1515/crll.1985.356.67
- Harald Hanche-Olsen and Erling Størmer, Jordan operator algebras, Monographs and Studies in Mathematics, vol. 21, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 755003
- Lawrence A. Harris, Bounded symmetric homogeneous domains in infinite dimensional spaces, Proceedings on Infinite Dimensional Holomorphy (Internat. Conf., Univ. Kentucky, Lexington, Ky., 1973) Lecture Notes in Math., Vol. 364, Springer, Berlin, 1974, pp. 13–40. MR 0407330
- Magnus R. Hestenes, A ternary algebra with applications to matrices and linear transformations, Arch. Rational Mech. Anal. 11 (1962), 138–194. MR 150166, DOI 10.1007/BF00253936
- Günther Horn, Classification of JBW$^*$-triples of type $\textrm {I}$, Math. Z. 196 (1987), no. 2, 271–291. MR 910832, DOI 10.1007/BF01163661
- Günther Horn, Coordinatization theorems for $\textrm {JBW}^*$-triples, Quart. J. Math. Oxford Ser. (2) 38 (1987), no. 151, 321–335. MR 907240, DOI 10.1093/qmath/38.3.321
- G. Horn and E. Neher, Classification of continuous $JBW^*$-triples, Trans. Amer. Math. Soc. 306 (1988), no. 2, 553–578. MR 933306, DOI 10.1090/S0002-9947-1988-0933306-7
- Wilhelm Kaup, A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z. 183 (1983), no. 4, 503–529. MR 710768, DOI 10.1007/BF01173928
- Wilhelm Kaup, Contractive projections on Jordan $C^{\ast }$-algebras and generalizations, Math. Scand. 54 (1984), no. 1, 95–100. MR 753066, DOI 10.7146/math.scand.a-12043
- Ottmar Loos, Jordan pairs, Lecture Notes in Mathematics, Vol. 460, Springer-Verlag, Berlin-New York, 1975. MR 0444721, DOI 10.1007/BFb0080843
- O. Loos, Bounded symmetric domains and Jordan pairs, Lecture Notes, Univ. of California, Irvine, 1977.
- Matthew Neal and Bernard Russo, Contractive projections and operator spaces, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 11, 873–878 (English, with English and French summaries). MR 1806425, DOI 10.1016/S0764-4442(00)01722-5
- Erhard Neher, Jordan triple systems by the grid approach, Lecture Notes in Mathematics, vol. 1280, Springer-Verlag, Berlin, 1987. MR 911879, DOI 10.1007/BFb0078217
- Timur Oikhberg and Haskell P. Rosenthal, Extension properties for the space of compact operators, J. Funct. Anal. 179 (2001), no. 2, 251–308. MR 1809112, DOI 10.1006/jfan.2000.3674
- Gilles Pisier, The operator Hilbert space $\textrm {OH}$, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 122 (1996), no. 585, viii+103. MR 1342022, DOI 10.1090/memo/0585
- Gilles Pisier, Non-commutative vector valued $L_p$-spaces and completely $p$-summing maps, Astérisque 247 (1998), vi+131 (English, with English and French summaries). MR 1648908
- A. Guyan Robertson, Injective matricial Hilbert spaces, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 1, 183–190. MR 1104613, DOI 10.1017/S0305004100070237
- A. G. Robertson and S. Wassermann, Completely bounded isomorphisms of injective operator systems, Bull. London Math. Soc. 21 (1989), no. 3, 285–290. MR 986373, DOI 10.1112/blms/21.3.285
- A. G. Robertson and M. A. Youngson, Isomorphisms of injective operator spaces and Jordan triple systems, Quart. J. Math. Oxford Ser. (2) 41 (1990), no. 164, 449–462. MR 1081106, DOI 10.1093/qmath/41.4.449
- Zhong-Jin Ruan, Subspaces of $C^*$-algebras, J. Funct. Anal. 76 (1988), no. 1, 217–230. MR 923053, DOI 10.1016/0022-1236(88)90057-2
- Zhong-Jin Ruan, Injectivity of operator spaces, Trans. Amer. Math. Soc. 315 (1989), no. 1, 89–104. MR 929239, DOI 10.1090/S0002-9947-1989-0929239-3
- Bernard Russo, Structure of $\textrm {JB}^*$-triples, Jordan algebras (Oberwolfach, 1992) de Gruyter, Berlin, 1994, pp. 209–280. MR 1293321
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 60, Springer-Verlag, New York-Heidelberg, 1971. MR 0442701
- Harald Upmeier, Symmetric Banach manifolds and Jordan $C^\ast$-algebras, North-Holland Mathematics Studies, vol. 104, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 96. MR 776786
- M. A. Youngson, Completely contractive projections on $C^{\ast }$-algebras, Quart. J. Math. Oxford Ser. (2) 34 (1983), no. 136, 507–511. MR 723287, DOI 10.1093/qmath/34.4.507
- Heinrich Zettl, A characterization of ternary rings of operators, Adv. in Math. 48 (1983), no. 2, 117–143. MR 700979, DOI 10.1016/0001-8708(83)90083-X
Bibliographic Information
- Matthew Neal
- Affiliation: Department of Mathematics, Denison University, Granville, Ohio 43023
- Email: nealm@denison.edu
- Bernard Russo
- Affiliation: Department of Mathematics, University of California, Irvine, California 92697-3875
- Email: brusso@math.uci.edu
- Received by editor(s): June 20, 2002
- Published electronically: January 27, 2003
- Additional Notes: This work was supported in part by NSF grant DMS-0101153
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 2223-2262
- MSC (2000): Primary 17C65; Secondary 46L07
- DOI: https://doi.org/10.1090/S0002-9947-03-03233-1
- MathSciNet review: 1973989