## A $C^1$ function for which the $\omega$-limit points are not contained in the closure of the periodic points

HTML articles powered by AMS MathViewer

- by Emma D’Aniello and T. H. Steele
- Trans. Amer. Math. Soc.
**355**(2003), 2545-2556 - DOI: https://doi.org/10.1090/S0002-9947-03-03258-6
- Published electronically: February 4, 2003
- PDF | Request permission

## Abstract:

We develop a $C^1$ function $f: [- \frac {1}{6}, 1] \rightarrow [- \frac {1}{6}, 1]$ for which $\Lambda (f) \not = \overline {P(f)}$. This answers a query from Block and Coppel (1992).## References

- L. S. Block and W. A. Coppel,
*Dynamics in one dimension*, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, Berlin, 1992. MR**1176513**, DOI 10.1007/BFb0084762 - Louis Block and Ethan M. Coven,
*$\omega$-limit sets for maps of the interval*, Ergodic Theory Dynam. Systems**6**(1986), no. 3, 335–344. MR**863198**, DOI 10.1017/S0143385700003539 - Hsin Chu and Jin Cheng Xiong,
*A counterexample in dynamical systems of the interval*, Proc. Amer. Math. Soc.**97**(1986), no. 2, 361–366. MR**835899**, DOI 10.1090/S0002-9939-1986-0835899-0 - Ethan M. Coven and Emma D’Aniello,
*Chaos for maps of the interval via $\omega$-limit points and periodic points*, Atti Sem. Mat. Fis. Univ. Modena**49**(2001), no. 2, 523–530. MR**1878254** - E. M. Coven, J. Madden, and Z. Nitecki,
*A note on generic properties of continuous maps*, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 97–101. MR**670076** - A. M. Bruckner and J. Ceder,
*Chaos in terms of the map $x\to \omega (x,f)$*, Pacific J. Math.**156**(1992), no. 1, 63–96. MR**1182256** - Robert L. Devaney,
*An introduction to chaotic dynamical systems*, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986. MR**811850** - V. V. Fedorenko, A. N. Šarkovskii, and J. Smítal,
*Characterizations of weakly chaotic maps of the interval*, Proc. Amer. Math. Soc.**110**(1990), no. 1, 141–148. MR**1017846**, DOI 10.1090/S0002-9939-1990-1017846-5 - M. V. Jakobson,
*On smooth mappings of the circle into itself*, Math. Sbornik, vol. 14, pp. 161-185, 1971. - Zbigniew Nitecki,
*Periodic and limit orbits and the depth of the center for piecewise monotone interval maps*, Proc. Amer. Math. Soc.**80**(1980), no. 3, 511–514. MR**581016**, DOI 10.1090/S0002-9939-1980-0581016-9 - Charles C. Pugh,
*An improved closing lemma and a general density theorem*, Amer. J. Math.**89**(1967), 1010–1021. MR**226670**, DOI 10.2307/2373414 - H. L. Royden,
*Real analysis*, 3rd ed., Macmillan Publishing Company, New York, 1988. MR**1013117** - O. M. Šarkovs′kiĭ,
*On a theorem of G. D. Birkhoff*, Dopovīdī Akad. Nauk Ukraïn. RSR Ser. A**1967**(1967), 429–432 (Ukrainian, with Russian and English summaries). MR**0212781** - A. N. Šarkovskiĭ,
*Attracting sets containing no cycles*, Ukrain. Mat. Ž.**20**(1968), no. 1, 136–142 (Russian). MR**0225314** - B. Schweizer and J. Smítal,
*Measures of chaos and a spectral decomposition of dynamical systems on the interval*, Trans. Amer. Math. Soc.**344**(1994), no. 2, 737–754. MR**1227094**, DOI 10.1090/S0002-9947-1994-1227094-X - J. Smítal,
*Chaotic functions with zero topological entropy*, Trans. Amer. Math. Soc.**297**(1986), no. 1, 269–282. MR**849479**, DOI 10.1090/S0002-9947-1986-0849479-9 - T. H. Steele,
*Iterative stability in the class of continuous functions*, Real Anal. Exchange**24**(1998/99), no. 2, 765–780. MR**1704748**, DOI 10.2307/44152994 - Lai Sang Young,
*A closing lemma on the interval*, Invent. Math.**54**(1979), no. 2, 179–187. MR**550182**, DOI 10.1007/BF01408935

## Bibliographic Information

**Emma D’Aniello**- Affiliation: Dipartimento di Matematica, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italia
- MR Author ID: 613115
- ORCID: 0000-0001-5872-0869
- Email: emma.daniello@unina2.it
**T. H. Steele**- Affiliation: Department of Mathematics, Weber State University, Ogden, Utah 84408-1702
- Email: thsteele@weber.edu
- Received by editor(s): May 20, 2002
- Received by editor(s) in revised form: August 13, 2002
- Published electronically: February 4, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**355**(2003), 2545-2556 - MSC (2000): Primary 26A18; Secondary 54H20
- DOI: https://doi.org/10.1090/S0002-9947-03-03258-6
- MathSciNet review: 1974002