A $C^1$ function for which the $\omega$-limit points are not contained in the closure of the periodic points
HTML articles powered by AMS MathViewer
- by Emma D’Aniello and T. H. Steele
- Trans. Amer. Math. Soc. 355 (2003), 2545-2556
- DOI: https://doi.org/10.1090/S0002-9947-03-03258-6
- Published electronically: February 4, 2003
- PDF | Request permission
Abstract:
We develop a $C^1$ function $f: [- \frac {1}{6}, 1] \rightarrow [- \frac {1}{6}, 1]$ for which $\Lambda (f) \not = \overline {P(f)}$. This answers a query from Block and Coppel (1992).References
- L. S. Block and W. A. Coppel, Dynamics in one dimension, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, Berlin, 1992. MR 1176513, DOI 10.1007/BFb0084762
- Louis Block and Ethan M. Coven, $\omega$-limit sets for maps of the interval, Ergodic Theory Dynam. Systems 6 (1986), no. 3, 335–344. MR 863198, DOI 10.1017/S0143385700003539
- Hsin Chu and Jin Cheng Xiong, A counterexample in dynamical systems of the interval, Proc. Amer. Math. Soc. 97 (1986), no. 2, 361–366. MR 835899, DOI 10.1090/S0002-9939-1986-0835899-0
- Ethan M. Coven and Emma D’Aniello, Chaos for maps of the interval via $\omega$-limit points and periodic points, Atti Sem. Mat. Fis. Univ. Modena 49 (2001), no. 2, 523–530. MR 1878254
- E. M. Coven, J. Madden, and Z. Nitecki, A note on generic properties of continuous maps, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 97–101. MR 670076
- A. M. Bruckner and J. Ceder, Chaos in terms of the map $x\to \omega (x,f)$, Pacific J. Math. 156 (1992), no. 1, 63–96. MR 1182256
- Robert L. Devaney, An introduction to chaotic dynamical systems, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986. MR 811850
- V. V. Fedorenko, A. N. Šarkovskii, and J. Smítal, Characterizations of weakly chaotic maps of the interval, Proc. Amer. Math. Soc. 110 (1990), no. 1, 141–148. MR 1017846, DOI 10.1090/S0002-9939-1990-1017846-5
- M. V. Jakobson, On smooth mappings of the circle into itself, Math. Sbornik, vol. 14, pp. 161-185, 1971.
- Zbigniew Nitecki, Periodic and limit orbits and the depth of the center for piecewise monotone interval maps, Proc. Amer. Math. Soc. 80 (1980), no. 3, 511–514. MR 581016, DOI 10.1090/S0002-9939-1980-0581016-9
- Charles C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math. 89 (1967), 1010–1021. MR 226670, DOI 10.2307/2373414
- H. L. Royden, Real analysis, 3rd ed., Macmillan Publishing Company, New York, 1988. MR 1013117
- O. M. Šarkovs′kiĭ, On a theorem of G. D. Birkhoff, Dopovīdī Akad. Nauk Ukraïn. RSR Ser. A 1967 (1967), 429–432 (Ukrainian, with Russian and English summaries). MR 0212781
- A. N. Šarkovskiĭ, Attracting sets containing no cycles, Ukrain. Mat. Ž. 20 (1968), no. 1, 136–142 (Russian). MR 0225314
- B. Schweizer and J. Smítal, Measures of chaos and a spectral decomposition of dynamical systems on the interval, Trans. Amer. Math. Soc. 344 (1994), no. 2, 737–754. MR 1227094, DOI 10.1090/S0002-9947-1994-1227094-X
- J. Smítal, Chaotic functions with zero topological entropy, Trans. Amer. Math. Soc. 297 (1986), no. 1, 269–282. MR 849479, DOI 10.1090/S0002-9947-1986-0849479-9
- T. H. Steele, Iterative stability in the class of continuous functions, Real Anal. Exchange 24 (1998/99), no. 2, 765–780. MR 1704748, DOI 10.2307/44152994
- Lai Sang Young, A closing lemma on the interval, Invent. Math. 54 (1979), no. 2, 179–187. MR 550182, DOI 10.1007/BF01408935
Bibliographic Information
- Emma D’Aniello
- Affiliation: Dipartimento di Matematica, Seconda Università degli Studi di Napoli, Via Vivaldi 43, 81100 Caserta, Italia
- MR Author ID: 613115
- ORCID: 0000-0001-5872-0869
- Email: emma.daniello@unina2.it
- T. H. Steele
- Affiliation: Department of Mathematics, Weber State University, Ogden, Utah 84408-1702
- Email: thsteele@weber.edu
- Received by editor(s): May 20, 2002
- Received by editor(s) in revised form: August 13, 2002
- Published electronically: February 4, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 2545-2556
- MSC (2000): Primary 26A18; Secondary 54H20
- DOI: https://doi.org/10.1090/S0002-9947-03-03258-6
- MathSciNet review: 1974002