Construction of $t$-structures and equivalences of derived categories
HTML articles powered by AMS MathViewer
- by Leovigildo Alonso Tarrío, Ana Jeremías López and María José Souto Salorio
- Trans. Amer. Math. Soc. 355 (2003), 2523-2543
- DOI: https://doi.org/10.1090/S0002-9947-03-03261-6
- Published electronically: January 30, 2003
- PDF | Request permission
Abstract:
We associate a $t$-structure to a family of objects in $\boldsymbol {\mathsf {D}}(\mathcal {A})$, the derived category of a Grothendieck category $\mathcal {A}$. Using general results on $t$-structures, we give a new proof of Rickard’s theorem on equivalence of bounded derived categories of modules. Also, we extend this result to bounded derived categories of quasi-coherent sheaves on separated divisorial schemes obtaining, in particular, Beĭlinson’s equivalences.References
- Leovigildo Alonso Tarrío, Ana Jeremías López, and Joseph Lipman, Local homology and cohomology on schemes, Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 1, 1–39. MR 1422312, DOI 10.1016/S0012-9593(97)89914-4
- Leovigildo Alonso Tarrío, Ana Jeremías López, and María José Souto Salorio, Localization in categories of complexes and unbounded resolutions, Canad. J. Math. 52 (2000), no. 2, 225–247. MR 1755776, DOI 10.4153/CJM-2000-010-4
- Beĭlinson, A. A.: Coherent sheaves on $\mathbf {P}^{n}$ and problems in linear algebra. Functional Anal. Appl. 12 (1978), no. 3, 214–216 (1979).
- A. A. Beĭlinson, The derived category of coherent sheaves on $\textbf {P}^n$, Selecta Math. Soviet. 3 (1983/84), no. 3, 233–237. Selected translations. MR 863137
- A. A. Beĭlinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I (Luminy, 1981) Astérisque, vol. 100, Soc. Math. France, Paris, 1982, pp. 5–171 (French). MR 751966
- Marcel Bökstedt and Amnon Neeman, Homotopy limits in triangulated categories, Compositio Math. 86 (1993), no. 2, 209–234. MR 1214458
- Nicolae Popesco and Pierre Gabriel, Caractérisation des catégories abéliennes avec générateurs et limites inductives exactes, C. R. Acad. Sci. Paris 258 (1964), 4188–4190 (French). MR 166241
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, DOI 10.2748/tmj/1178244839
- Grothendieck, A.; Dieudonné, J. A.: Eléments de Géométrie Algébrique I, Grundlehren der math. Wiss. 166, Springer–Verlag, Heidelberg, 1971.
- A. Grothendieck, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. 4 (1960), 228 (French). MR 217083
- Bernhard Keller and Dieter Vossieck, Sous les catégories dérivées, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 6, 225–228 (French, with English summary). MR 907948
- B. Keller and D. Vossieck, Aisles in derived categories, Bull. Soc. Math. Belg. Sér. A 40 (1988), no. 2, 239–253. Deuxième Contact Franco-Belge en Algèbre (Faulx-les-Tombes, 1987). MR 976638
- Illusie, L.: Existence de résolutions globales, in Théorie des Intersections et Théorème de Riemann-Roch (SGA 6), Lecture Notes in Math., no. 225, Springer-Verlag, New York, 1971, pp.160-222
- Azriel Lévy, Basic set theory, Springer-Verlag, Berlin-New York, 1979. MR 533962, DOI 10.1007/978-3-662-02308-2
- Barry Mitchell, Theory of categories, Pure and Applied Mathematics, Vol. XVII, Academic Press, New York-London, 1965. MR 0202787
- Amnon Neeman, The connection between the $K$-theory localization theorem of Thomason, Trobaugh and Yao and the smashing subcategories of Bousfield and Ravenel, Ann. Sci. École Norm. Sup. (4) 25 (1992), no. 5, 547–566. MR 1191736, DOI 10.24033/asens.1659
- Jeremy Rickard, Morita theory for derived categories, J. London Math. Soc. (2) 39 (1989), no. 3, 436–456. MR 1002456, DOI 10.1112/jlms/s2-39.3.436
- Bo Stenström, Rings of quotients, Die Grundlehren der mathematischen Wissenschaften, Band 217, Springer-Verlag, New York-Heidelberg, 1975. An introduction to methods of ring theory. MR 0389953, DOI 10.1007/978-3-642-66066-5
- R. W. Thomason and Thomas Trobaugh, Higher algebraic $K$-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser Boston, Boston, MA, 1990, pp. 247–435. MR 1106918, DOI 10.1007/978-0-8176-4576-2_{1}0
- Verdier, J.-L.: Categories dérivées. Quelques résultats (Etat 0). Semin. Geom. algebr. Bois-Marie, SGA 4$\frac {1}{2}$, Lect. Notes Math. 569, 262-311 (1977).
Bibliographic Information
- Leovigildo Alonso Tarrío
- Affiliation: Departamento de Álxebra, Facultade de Matemáticas, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
- MR Author ID: 25070
- ORCID: 0000-0002-6896-0652
- Email: leoalonso@usc.es
- Ana Jeremías López
- Affiliation: Departamento de Álxebra, Facultade de Matemáticas, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
- Email: jeremias@usc.es
- María José Souto Salorio
- Affiliation: Facultade de Informática, Campus de Elviña, Universidade da Coruña, E-15071 A Coruña, Spain
- Email: mariaj@udc.es
- Received by editor(s): May 14, 2002
- Received by editor(s) in revised form: October 30, 2002
- Published electronically: January 30, 2003
- Additional Notes: The first two authors were partially supported by Spain’s MCyT and E.U.’s FEDER research project BFM2001-3241, supplemented by Xunta de Galicia grant PGDIT 01PX120701PR
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 2523-2543
- MSC (2000): Primary 18E30; Secondary 14F05, 16D90
- DOI: https://doi.org/10.1090/S0002-9947-03-03261-6
- MathSciNet review: 1974001