Formality in an equivariant setting
HTML articles powered by AMS MathViewer
- by Steven Lillywhite
- Trans. Amer. Math. Soc. 355 (2003), 2771-2793
- DOI: https://doi.org/10.1090/S0002-9947-03-03265-3
- Published electronically: February 25, 2003
- PDF | Request permission
Abstract:
We define and discuss $G$-formality for certain spaces endowed with an action by a compact Lie group. This concept is essentially formality of the Borel construction of the space in a category of commutative differential graded algebras over $R=H^\bullet (BG)$. These results may be applied in computing the equivariant cohomology of their loop spaces.References
- Christopher Allday, Rational homotopy and torus actions, Houston J. Math. 5 (1979), no. 1, 1–19. MR 533634
- Christopher Allday, Invariant Sullivan-de Rham forms on cyclic sets, J. London Math. Soc. (2) 57 (1998), no. 2, 478–490. MR 1644241, DOI 10.1112/S0024610798005869
- C. Allday and V. Puppe, Cohomological methods in transformation groups, Cambridge Studies in Advanced Mathematics, vol. 32, Cambridge University Press, Cambridge, 1993. MR 1236839, DOI 10.1017/CBO9780511526275
- A. K. Bousfield and V. K. A. M. Gugenheim, On $\textrm {PL}$ de Rham theory and rational homotopy type, Mem. Amer. Math. Soc. 8 (1976), no. 179, ix+94. MR 425956, DOI 10.1090/memo/0179
- Kuo Tsai Chen, Reduced bar constructions on de Rham complexes, Algebra, topology, and category theory (a collection of papers in honor of Samuel Eilenberg), Academic Press, New York, 1976, pp. 19–32. MR 0413151
- Pierre Deligne, Phillip Griffiths, John Morgan, and Dennis Sullivan, Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), no. 3, 245–274. MR 382702, DOI 10.1007/BF01389853
- W. G. Dwyer and J. Spaliński, Homotopy theories and model categories, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 73–126. MR 1361887, DOI 10.1016/B978-044481779-2/50003-1
- Samuel Eilenberg and John C. Moore, Homology and fibrations. I. Coalgebras, cotensor product and its derived functors, Comment. Math. Helv. 40 (1966), 199–236. MR 203730, DOI 10.1007/BF02564371
- Armand Borel, Seminar on transformation groups, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR 0116341
- Ezra Getzler, John D. S. Jones, and Scott Petrack, Differential forms on loop spaces and the cyclic bar complex, Topology 30 (1991), no. 3, 339–371. MR 1113683, DOI 10.1016/0040-9383(91)90019-Z
- Mark Goresky, Robert Kottwitz, and Robert MacPherson, Equivariant cohomology, Koszul duality, and the localization theorem, Invent. Math. 131 (1998), no. 1, 25–83. MR 1489894, DOI 10.1007/s002220050197
- Pierre-Paul Grivel, Formes différentielles et suites spectrales, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 3, ix, 17–37 (French, with English summary). MR 552958
- Victor W. Guillemin and Shlomo Sternberg, Supersymmetry and equivariant de Rham theory, Mathematics Past and Present, Springer-Verlag, Berlin, 1999. With an appendix containing two reprints by Henri Cartan [ MR0042426 (13,107e); MR0042427 (13,107f)]. MR 1689252, DOI 10.1007/978-3-662-03992-2
- S. Halperin, Lectures on minimal models, Mém. Soc. Math. France (N.S.) 9-10 (1983), 261. MR 736299
- Stephen Halperin and James Stasheff, Obstructions to homotopy equivalences, Adv. in Math. 32 (1979), no. 3, 233–279. MR 539532, DOI 10.1016/0001-8708(79)90043-4
- S. Lillywhite, Bar complexes and formality of pull-backs, Preprint.
- —, The topology of symplectic quotients of loop spaces, Ph.D. thesis, The University of Maryland, College Park, MD., 1998.
- Steven Lillywhite, The topology of the moduli space of arc-length parametrised closed curves in Euclidean space, Topology 39 (2000), no. 3, 487–494. MR 1746904, DOI 10.1016/S0040-9383(99)00010-5
- Gregory Lupton, Variations on a conjecture of Halperin, Homotopy and geometry (Warsaw, 1997) Banach Center Publ., vol. 45, Polish Acad. Sci. Inst. Math., Warsaw, 1998, pp. 115–135. MR 1679854
- John McCleary, User’s guide to spectral sequences, Mathematics Lecture Series, vol. 12, Publish or Perish, Inc., Wilmington, DE, 1985. MR 820463
- Timothy James Miller, On the formality of $(k-1)$-connected compact manifolds of dimension less than or equal to $4k-2$, Illinois J. Math. 23 (1979), no. 2, 253–258. MR 528561
- Daniel G. Quillen, Homotopical algebra, Lecture Notes in Mathematics, No. 43, Springer-Verlag, Berlin-New York, 1967. MR 0223432, DOI 10.1007/BFb0097438
- Daniel Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205–295. MR 258031, DOI 10.2307/1970725
- Larry Smith, Homological algebra and the Eilenberg-Moore spectral sequence, Trans. Amer. Math. Soc. 129 (1967), 58–93. MR 216504, DOI 10.1090/S0002-9947-1967-0216504-6
- Constantin Teleman, The quantization conjecture revisited, Ann. of Math. (2) 152 (2000), no. 1, 1–43. MR 1792291, DOI 10.2307/2661378
Bibliographic Information
- Steven Lillywhite
- Affiliation: Department of Mathematics, University of Toronto, 100 St. George St., Toronto, Ontario, Canada M5S 3G3
- Email: sml@math.toronto.edu
- Received by editor(s): January 1, 2002
- Published electronically: February 25, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 2771-2793
- MSC (2000): Primary 55P62; Secondary 55N91, 18G55, 57T30
- DOI: https://doi.org/10.1090/S0002-9947-03-03265-3
- MathSciNet review: 1975399