## The almost-disjointness number may have countable cofinality

HTML articles powered by AMS MathViewer

- by Jörg Brendle PDF
- Trans. Amer. Math. Soc.
**355**(2003), 2633-2649 Request permission

## Abstract:

We show that it is consistent for the almost-disjointness number $\mathfrak {a}$ to have countable cofinality. For example, it may be equal to $\aleph _\omega$.## References

- Tomek Bartoszyński and Haim Judah,
*Set theory*, A K Peters, Ltd., Wellesley, MA, 1995. On the structure of the real line. MR**1350295**, DOI 10.1201/9781439863466 - A. Blass,
*Combinatorial cardinal characteristics of the continuum*, in: Handbook of Set Theory (A. Kanamori et al., eds.), to appear. - J. Brendle,
*Mad families and iteration theory*, in: Logic and Algebra (Y. Zhang, ed.), Contemp. Math. 302 (2002), Amer. Math. Soc., Providence, RI, 1-31. - Stephen H. Hechler,
*Short complete nested sequences in $\beta N\backslash N$ and small maximal almost-disjoint families*, General Topology and Appl.**2**(1972), 139–149. MR**307913**, DOI 10.1016/0016-660X(72)90001-3 - Stephen H. Hechler,
*On the existence of certain cofinal subsets of $^{\omega }\omega$*, Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1974, pp. 155–173. MR**0360266** - Arnold W. Miller,
*Arnie Miller’s problem list*, Set theory of the reals (Ramat Gan, 1991) Israel Math. Conf. Proc., vol. 6, Bar-Ilan Univ., Ramat Gan, 1993, pp. 645–654. MR**1234292** - Saharon Shelah,
*Covering of the null ideal may have countable cofinality*, Fund. Math.**166**(2000), no. 1-2, 109–136. Saharon Shelah’s anniversary issue. MR**1804707**, DOI 10.4064/fm-166-1-2-109-136 - S. Shelah,
*Are $\mathfrak {a}$ and $\mathbb {D}$ your cup of tea?*Acta Math., to appear. (publication number 700) - Eric K. van Douwen,
*The integers and topology*, Handbook of set-theoretic topology, North-Holland, Amsterdam, 1984, pp. 111–167. MR**776622** - J. E. Vaughan,
*Small uncountable cardinals and topology*, in: Open Problems in Topology (J. van Mill and G. M. Reed, eds.), North-Holland (1990), 195-218.

## Additional Information

**Jörg Brendle**- Affiliation: The Graduate School of Science and Technology, Kobe University, Rokko–dai 1–1, Nada–ku, Kobe 657–8501, Japan
- Email: brendle@kurt.scitec.kobe-u.ac.jp
- Received by editor(s): October 3, 2001
- Published electronically: February 27, 2003
- Additional Notes: Supported by Grant–in–Aid for Scientific Research (C)(2)12640124, Japan Society for the Promotion of Science
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**355**(2003), 2633-2649 - MSC (2000): Primary 03E17; Secondary 03E35
- DOI: https://doi.org/10.1090/S0002-9947-03-03271-9
- MathSciNet review: 1975392