A classification and examples of rank one chain domains
HTML articles powered by AMS MathViewer
- by H. H. Brungs and N. I. Dubrovin
- Trans. Amer. Math. Soc. 355 (2003), 2733-2753
- DOI: https://doi.org/10.1090/S0002-9947-03-03272-0
- Published electronically: March 19, 2003
- PDF | Request permission
Abstract:
A chain order of a skew field $D$ is a subring $R$ of $D$ so that $d\in D\backslash R$ implies $d^{-1}\in R.$ Such a ring $R$ has rank one if $J(R)$, the Jacobson radical of $R,$ is its only nonzero completely prime ideal. We show that a rank one chain order of $D$ is either invariant, in which case $R$ corresponds to a real-valued valuation of $D,$ or $R$ is nearly simple, in which case $R,$ $J(R)$ and $(0)$ are the only ideals of $R,$ or $R$ is exceptional in which case $R$ contains a prime ideal $Q$ that is not completely prime. We use the group $\mathcal {M}(R)$ of divisorial $R$-ideals of $D$ with the subgroup $\mathcal {H}(R)$ of principal $R$-ideals to characterize these cases. The exceptional case subdivides further into infinitely many cases depending on the index $k$ of $\mathcal {H}(R)$ in $\mathcal {M}(R).$ Using the covering group $\mathbb {G}$ of $\operatorname {SL}(2,\mathbb {R})$ and the result that the group ring $T\mathbb {G}$ is embeddable into a skew field for $T$ a skew field, examples of rank one chain orders are constructed for each possible exceptional case.References
- George M. Bergman, Right orderable groups that are not locally indicable, Pacific J. Math. 147 (1991), no. 2, 243–248. MR 1084707, DOI 10.2140/pjm.1991.147.243
- H. H. Brungs, H. Marubayashi, and E. Osmanagic, A classification of prime segments in simple Artinian rings, Proc. Amer. Math. Soc. 128 (2000), no. 11, 3167–3175. MR 1690977, DOI 10.1090/S0002-9939-00-05440-X
- H. H. Brungs and M. Schröder, Prime segments of skew fields, Canad. J. Math. 47 (1995), no. 6, 1148–1176. MR 1370512, DOI 10.4153/CJM-1995-059-3
- H. H. Brungs and G. Törner, Chain rings and prime ideals, Arch. Math. (Basel) 27 (1976), no. 3, 253–260. MR 419516, DOI 10.1007/BF01224668
- Hans-Heinrich Brungs and Günter Törner, Extensions of chain rings, Math. Z. 185 (1984), no. 1, 93–104. MR 724046, DOI 10.1007/BF01214974
- Hans-Heinrich Brungs and Günter Törner, Ideal theory of right cones and associated rings, J. Algebra 210 (1998), no. 1, 145–164. MR 1656418, DOI 10.1006/jabr.1998.7456
- P. M. Cohn, Skew fields, Encyclopedia of Mathematics and its Applications, vol. 57, Cambridge University Press, Cambridge, 1995. Theory of general division rings. MR 1349108, DOI 10.1017/CBO9781139087193
- N. I. Dubrovin, Chain domains, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2 (1980), 51–54, 104 (Russian, with English summary). MR 570590
- N. I. Dubrovin, An example of a chain primitive ring with nilpotent elements, Mat. Sb. (N.S.) 120(162) (1983), no. 3, 441–447 (Russian). MR 691988
- N. I. Dubrovin, Rational closures of group rings of left-ordered groups, Mat. Sb. 184 (1993), no. 7, 3–48 (Russian, with Russian summary); English transl., Russian Acad. Sci. Sb. Math. 79 (1994), no. 2, 231–263. MR 1235288, DOI 10.1070/SM1994v079n02ABEH003498
- N. I. Dubrovin. The rational closure of group rings of left-ordered groups. SM-DU-254, Duisburg, 1994, 96 pp.
- T. V. Dubrovina and N. I. Dubrovin, Cones in groups, Mat. Sb. 187 (1996), no. 7, 59–74 (Russian, with Russian summary); English transl., Sb. Math. 187 (1996), no. 7, 1005–1019. MR 1404187, DOI 10.1070/SM1996v187n07ABEH000144
- László Fuchs, Teilweise geordnete algebraische Strukturen, Studia Mathematica/Mathematische Lehrbücher, Band XIX, Vandenhoeck & Ruprecht, Göttingen, 1966 (German). Übersetzt aus dem Englischen von Éva Vas. MR 0204547
- V. K. Goel and S. K. Jain, $\pi$-injective modules and rings whose cyclics are $\pi$-injective, Comm. Algebra 6 (1978), no. 1, 59–73. MR 491819, DOI 10.1080/00927877808822233
- M. I. Kargapolov and Ju. I. Merzljakov, Fundamentals of the theory of groups, Graduate Texts in Mathematics, vol. 62, Springer-Verlag, New York-Berlin, 1979. Translated from the second Russian edition by Robert G. Burns. MR 551207, DOI 10.1007/978-1-4612-9964-6
- Karl Mathiak, Zur Bewertungstheorie nicht kommutativer Körper, J. Algebra 73 (1981), no. 2, 586–600 (German). MR 640051, DOI 10.1016/0021-8693(81)90337-9
- Karl Mathiak, Valuations of skew fields and projective Hjelmslev spaces, Lecture Notes in Mathematics, vol. 1175, Springer-Verlag, Berlin, 1986. MR 835210, DOI 10.1007/BFb0074653
- B. L. Osofsky, Noncommutative rings whose cyclic modules have cyclic injective hulls, Pacific J. Math. 25 (1968), 331–340. MR 231858, DOI 10.2140/pjm.1968.25.331
- Edward C. Posner, Left valuation rings and simple radical rings, Trans. Amer. Math. Soc. 107 (1963), 458–465. MR 153704, DOI 10.1090/S0002-9947-1963-0153704-4
Bibliographic Information
- H. H. Brungs
- Affiliation: Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton T6G 2G1, Canada
- Email: hbrungs@math.ualberta.ca
- N. I. Dubrovin
- Affiliation: Department of Mathematics, Vladimir State University, Gorki Str. 87, 600026 Vladimir, Russia
- Email: ndubrovin@mail.ru
- Received by editor(s): April 10, 2002
- Received by editor(s) in revised form: October 9, 2002
- Published electronically: March 19, 2003
- Additional Notes: The first author was supported by NSERC
The second author was supported by RFBR and DFG (grant no. 98-01-04110). - © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 2733-2753
- MSC (2000): Primary 16L30, 16K40, 16W60; Secondary 20F29, 20F60
- DOI: https://doi.org/10.1090/S0002-9947-03-03272-0
- MathSciNet review: 1975397