When are the tangent sphere bundles of a Riemannian manifold reducible?
HTML articles powered by AMS MathViewer
- by E. Boeckx
- Trans. Amer. Math. Soc. 355 (2003), 2885-2903
- DOI: https://doi.org/10.1090/S0002-9947-03-03289-6
- Published electronically: March 14, 2003
- PDF | Request permission
Abstract:
We determine all Riemannian manifolds for which the tangent sphere bundles, equipped with the Sasaki metric, are local or global Riemannian product manifolds.References
- M. F. Atiyah, R. Bott, and A. Shapiro, Clifford modules, Topology 3 (1964), no. suppl, suppl. 1, 3–38. MR 167985, DOI 10.1016/0040-9383(64)90003-5
- J. Berndt, E. Boeckx, P. Nagy and L. Vanhecke, Geodesics on the unit tangent bundle, preprint, 2001.
- Jürgen Berndt, Franco Tricerri, and Lieven Vanhecke, Generalized Heisenberg groups and Damek-Ricci harmonic spaces, Lecture Notes in Mathematics, vol. 1598, Springer-Verlag, Berlin, 1995. MR 1340192, DOI 10.1007/BFb0076902
- E. Boeckx and G. Calvaruso, When is the unit tangent sphere bundle semi-symmetric?, preprint, 2002.
- E. Boeckx and L. Vanhecke, Characteristic reflections on unit tangent sphere bundles, Houston J. Math. 23 (1997), no. 3, 427–448. MR 1690045
- E. Boeckx and L. Vanhecke, Curvature homogeneous unit tangent sphere bundles, Publ. Math. Debrecen 53 (1998), no. 3-4, 389–413. MR 1657491, DOI 10.5486/pmd.1998.2071
- E. Boeckx and L. Vanhecke, Harmonic and minimal vector fields on tangent and unit tangent bundles, Differential Geom. Appl. 13 (2000), no. 1, 77–93. MR 1775222, DOI 10.1016/S0926-2245(00)00021-8
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Oldřich Kowalski and Masami Sekizawa, On tangent sphere bundles with small or large constant radius, Ann. Global Anal. Geom. 18 (2000), no. 3-4, 207–219. Special issue in memory of Alfred Gray (1939–1998). MR 1795094, DOI 10.1023/A:1006707521207
- O. Kowalski, M. Sekizawa, and Z. Vlášek, Can tangent sphere bundles over Riemannian manifolds have strictly positive sectional curvature?, Global differential geometry: the mathematical legacy of Alfred Gray (Bilbao, 2000) Contemp. Math., vol. 288, Amer. Math. Soc., Providence, RI, 2001, pp. 110–118. MR 1871003, DOI 10.1090/conm/288/04820
Bibliographic Information
- E. Boeckx
- Affiliation: Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven, Belgium
- Email: eric.boeckx@wis.kuleuven.ac.be
- Received by editor(s): November 11, 2002
- Received by editor(s) in revised form: January 21, 2003
- Published electronically: March 14, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 2885-2903
- MSC (2000): Primary 53B20, 53C12, 53C20
- DOI: https://doi.org/10.1090/S0002-9947-03-03289-6
- MathSciNet review: 1975404