## West’s problem on equivariant hyperspaces and Banach-Mazur compacta

HTML articles powered by AMS MathViewer

- by Sergey Antonyan PDF
- Trans. Amer. Math. Soc.
**355**(2003), 3379-3404 Request permission

Corrigendum: Trans. Amer. Math. Soc.

**358**(2006), 5631-5633.

## Abstract:

Let $G$ be a compact Lie group, $X$ a metric $G$-space, and $\exp X$ the hyperspace of all nonempty compact subsets of $X$ endowed with the Hausdorff metric topology and with the induced action of $G$. We prove that the following three assertions are equivalent: (a) $X$ is locally continuum-connected (resp., connected and locally continuum-connected); (b) $\exp X$ is a $G$-ANR (resp., a $G$-AR); (c) $(\exp X)/G$ is an ANR (resp., an AR). This is applied to show that $(\exp G)/G$ is an ANR (resp., an AR) for each compact (resp., connected) Lie group $G$. If $G$ is a finite group, then $(\exp X)/G$ is a Hilbert cube whenever $X$ is a nondegenerate Peano continuum. Let $L(n)$ be the hyperspace of all centrally symmetric, compact, convex bodies $A\subset \mathbb {R}^n$, $n\ge 2$, for which the ordinary Euclidean unit ball is the ellipsoid of minimal volume containing $A$, and let $L_0(n)$ be the complement of the unique $O(n)$-fixed point in $L(n)$. We prove that: (1) for each closed subgroup $H\subset O(n)$, $L_0(n)/H$ is a Hilbert cube manifold; (2) for each closed subgroup $K\subset O(n)$ acting non-transitively on $S^{n-1}$, the $K$-orbit space $L(n)/K$ and the $K$-fixed point set $L(n)[K]$ are Hilbert cubes. As an application we establish new topological models for tha Banach-Mazur compacta $L(n)/O(n)$ and prove that $L_0(n)$ and $(\exp S^{n-1})\setminus \{S^{n-1}\}$ have the same $O(n)$-homotopy type.## References

- Herbert Abels,
*Parallelizability of proper actions, global $K$-slices and maximal compact subgroups*, Math. Ann.**212**(1974/75), 1–19. MR**375264**, DOI 10.1007/BF01343976 - S. A. Antonjan,
*Retracts in categories of $G$-spaces*, Izv. Akad. Nauk Armyan. SSR Ser. Mat.**15**(1980), no. 5, 365–378, 417 (Russian, with English and Armenian summaries). MR**604847** - S. A. Antonyan,
*Equivariant generalization of Dugundji’s theorem*, Mat. Zametki**38**(1985), no. 4, 608–616, 636 (Russian). MR**819426** - Sergey Antonian,
*An equivariant theory of retracts*, Aspects of topology, London Math. Soc. Lecture Note Ser., vol. 93, Cambridge Univ. Press, Cambridge, 1985, pp. 251–269. MR**787832** - S. Antonian,
*Equivariant embeddings into $G$-ARs*, Glas. Mat. Ser. III**22(42)**(1987), no. 2, 503–533 (English, with Serbo-Croatian summary). MR**957632** - S. A. Antonyan,
*Retraction properties of an orbit space*, Mat. Sb. (N.S.)**137(179)**(1988), no. 3, 300–318, 432 (Russian); English transl., Math. USSR-Sb.**65**(1990), no. 2, 305–321. MR**976513**, DOI 10.1070/SM1990v065n02ABEH001311 - S. A. Antonyan,
*Retraction properties of an orbit space. II*, Uspekhi Mat. Nauk**48**(1993), no. 6(294), 145–146 (Russian); English transl., Russian Math. Surveys**48**(1993), no. 6, 156–157. MR**1264160**, DOI 10.1070/RM1993v048n06ABEH001095 - Sergey A. Antonyan,
*The Banach-Mazur compacta are absolute retracts*, Bull. Polish Acad. Sci. Math.**46**(1998), no. 2, 113–119. MR**1631246** - Sergey A. Antonyan,
*The topology of the Banach-Mazur compactum*, Fund. Math.**166**(2000), no. 3, 209–232. MR**1809416**, DOI 10.4064/fm-166-3-209-232 - Stefan Banach,
*Théorie des opérations linéaires*, Éditions Jacques Gabay, Sceaux, 1993 (French). Reprint of the 1932 original. MR**1357166** - Glen E. Bredon,
*Introduction to compact transformation groups*, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR**0413144** - T. A. Chapman,
*Lectures on Hilbert cube manifolds*, Regional Conference Series in Mathematics, No. 28, American Mathematical Society, Providence, R.I., 1976. Expository lectures from the CBMS Regional Conference held at Guilford College, October 11-15, 1975. MR**0423357**, DOI 10.1090/cbms/028 - D. W. Curtis,
*Hyperspaces of noncompact metric spaces*, Compositio Math.**40**(1980), no. 2, 139–152. MR**563538** - D. W. Curtis,
*Boundary sets in the Hilbert cube*, Topology Appl.**20**(1985), no. 3, 201–221. MR**804034**, DOI 10.1016/0166-8641(85)90089-6 - James Dugundji,
*Topology*, Allyn and Bacon, Inc., Boston, Mass., 1966. MR**0193606** - P. Fabel,
*The Banach-Mazur compactum $Q(2)$ is an absolute retract*, in: Topology and Applications (International Topological Conference dedicated to P. S. Alexandroff’s 100th birthday, Moscow, May 27-31, 1996), p. 57, Moscow, 1996. - R. E. Heisey and J. E. West,
*Orbit spaces of the hyperspace of a graph which are Hilbert cubes*, Colloq. Math.**56**(1988), no. 1, 59–69. MR**980511**, DOI 10.4064/cm-56-1-59-69 - David W. Henderson,
*$Z$-sets in ANR’s*, Trans. Amer. Math. Soc.**213**(1975), 205–216. MR**391008**, DOI 10.1090/S0002-9947-1975-0391008-3 - Alejandro Illanes and Sam B. Nadler Jr.,
*Hyperspaces*, Monographs and Textbooks in Pure and Applied Mathematics, vol. 216, Marcel Dekker, Inc., New York, 1999. Fundamentals and recent advances. MR**1670250** - I. M. James and G. B. Segal,
*On equivariant homotopy theory*, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 316–330. MR**585665** - Morgan Ward,
*Ring homomorphisms which are also lattice homomorphisms*, Amer. J. Math.**61**(1939), 783–787. MR**10**, DOI 10.2307/2371336 - Takao Matumoto,
*On $G$-$\textrm {CW}$ complexes and a theorem of J. H. C. Whitehead*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**18**(1971), 363–374. MR**345103** - J. van Mill,
*Infinite-dimensional topology*, North-Holland Mathematical Library, vol. 43, North-Holland Publishing Co., Amsterdam, 1989. Prerequisites and introduction. MR**977744** - Saunders MacLane,
*Steinitz field towers for modular fields*, Trans. Amer. Math. Soc.**46**(1939), 23–45. MR**17**, DOI 10.1090/S0002-9947-1939-0000017-3 - Sam B. Nadler Jr.,
*Hyperspaces of sets*, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 49, Marcel Dekker, Inc., New York-Basel, 1978. A text with research questions. MR**0500811** - R. Palais,
*The classification of $G$-spaces*, Memoirs of the Amer. Math. Soc.**36**, Providence, RI, 1960. - Edwin H. Spanier,
*Algebraic topology*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0210112** - H. Toruńczyk,
*On $\textrm {CE}$-images of the Hilbert cube and characterization of $Q$-manifolds*, Fund. Math.**106**(1980), no. 1, 31–40. MR**585543**, DOI 10.4064/fm-106-1-31-40 - H. Toruńczyk and J. E. West,
*The fine structure of $S^{1}/S^{1}$; a $Q$-manifold hyperspace localization of the integers*, Proceedings of the International Conference on Geometric Topology (Warsaw, 1978) PWN, Warsaw, 1980, pp. 439–449. MR**656786** - J. de Vries,
*Topics in the theory of topological transformation groups*, Topological structures, II (Proc. Sympos. Topology and Geom., Amsterdam, 1978) Math. Centre Tracts, vol. 116, Math. Centrum, Amsterdam, 1979, pp. 291–304. MR**565849** - Roger Webster,
*Convexity*, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1994. MR**1443208** - James E. West,
*Infinite products which are Hilbert cubes*, Trans. Amer. Math. Soc.**150**(1970), 1–25. MR**266147**, DOI 10.1090/S0002-9947-1970-0266147-3 - J. E. West,
*Induced involutions on Hilbert cube hyperspaces*, Topology Proceedings, Vol. I (Conf., Auburn Univ., Auburn, Ala., 1976) Math. Dept., Auburn Univ., Auburn, Ala., 1977, pp. 281–293. MR**0515650** - Jan van Mill and George M. Reed (eds.),
*Open problems in topology*, North-Holland Publishing Co., Amsterdam, 1990. MR**1078636** - M. Wojdyslawski,
*Rétractes absolus et hyperespaces des continus*, Fund. Math.**32**(1939), 184–192. - R. Y. T. Wong,
*Noncompact Hilbert cube manifolds*, preprint.

## Additional Information

**Sergey Antonyan**- Affiliation: Departamento de Matematicas, Facultad de Ciencias, UNAM, Ciudad Universitaria, México D.F. 04510, México
- Email: antonyan@servidor.unam.mx
- Received by editor(s): May 1, 2000
- Received by editor(s) in revised form: September 15, 2002
- Published electronically: April 8, 2003
- Additional Notes: The author was supported in part by grant IN-105800 from PAPIIT (UNAM)
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**355**(2003), 3379-3404 - MSC (2000): Primary 57N20, 57S10, 54B20, 54C55, 55P91, 46B99
- DOI: https://doi.org/10.1090/S0002-9947-03-03217-3
- MathSciNet review: 1974693