Weierstrass functions with random phases
HTML articles powered by AMS MathViewer
- by Yanick Heurteaux
- Trans. Amer. Math. Soc. 355 (2003), 3065-3077
- DOI: https://doi.org/10.1090/S0002-9947-03-03221-5
- Published electronically: March 19, 2003
- PDF | Request permission
Abstract:
Consider the function \[ f_\theta (x)=\sum _{n=0}^{+\infty }b^{-n\alpha }g(b^nx+\theta _n),\] where $b>1$, $0<\alpha <1$, and $g$ is a non-constant 1-periodic Lipschitz function. The phases $\theta _n$ are chosen independently with respect to the uniform probability measure on $[0,1]$. We prove that with probability one, we can choose a sequence of scales $\delta _k\searrow 0$ such that for every interval $I$ of length $|I|=\delta _k$, the oscillation of $f_\theta$ satisfies $\operatorname {osc}(f_\theta ,I)\geq C|I|^\alpha$. Moreover, the inequality $\operatorname {osc}(f_\theta ,I)\geq C|I|^{\alpha +\varepsilon }$ is almost surely true at every scale. When $b$ is a transcendental number, these results can be improved: the minoration $\operatorname {osc}(f_\theta ,I)\geq C|I|^\alpha$ is true for every choice of the phases $\theta _n$ and at every scale.References
- T. Bousch and Y. Heurteaux, On oscillations of Weierstrass-type functions, manuscript, 1999.
- Thierry Bousch and Yanick Heurteaux, Caloric measure on domains bounded by Weierstrass-type graphs, Ann. Acad. Sci. Fenn. Math. 25 (2000), no. 2, 501–522. MR 1762432
- Kenneth Falconer, Fractal geometry, John Wiley & Sons, Ltd., Chichester, 1990. Mathematical foundations and applications. MR 1102677
- Kenneth Falconer, Techniques in fractal geometry, John Wiley & Sons, Ltd., Chichester, 1997. MR 1449135
- G. H. Hardy, Weierstrass’s non-differentiable function, Trans. Amer. Math. Soc. 17 (1916), 301–325.
- Tian You Hu and Ka-Sing Lau, The sum of Rademacher functions and Hausdorff dimension, Math. Proc. Cambridge Philos. Soc. 108 (1990), no. 1, 97–103. MR 1049763, DOI 10.1017/S0305004100068985
- Tian You Hu and Ka-Sing Lau, Fractal dimensions and singularities of the Weierstrass type functions, Trans. Amer. Math. Soc. 335 (1993), no. 2, 649–665. MR 1076614, DOI 10.1090/S0002-9947-1993-1076614-6
- Brian R. Hunt, The Hausdorff dimension of graphs of Weierstrass functions, Proc. Amer. Math. Soc. 126 (1998), no. 3, 791–800. MR 1452806, DOI 10.1090/S0002-9939-98-04387-1
- James L. Kaplan, John Mallet-Paret, and James A. Yorke, The Lyapunov dimension of a nowhere differentiable attracting torus, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 261–281. MR 766105, DOI 10.1017/S0143385700002431
- François Ledrappier, On the dimension of some graphs, Symbolic dynamics and its applications (New Haven, CT, 1991) Contemp. Math., vol. 135, Amer. Math. Soc., Providence, RI, 1992, pp. 285–293. MR 1185095, DOI 10.1090/conm/135/1185095
- R. Daniel Mauldin and S. C. Williams, On the Hausdorff dimension of some graphs, Trans. Amer. Math. Soc. 298 (1986), no. 2, 793–803. MR 860394, DOI 10.1090/S0002-9947-1986-0860394-7
- Curt McMullen, The Hausdorff dimension of general Sierpiński carpets, Nagoya Math. J. 96 (1984), 1–9. MR 771063, DOI 10.1017/S0027763000021085
- Karl Petersen, Ergodic theory, Cambridge Studies in Advanced Mathematics, vol. 2, Cambridge University Press, Cambridge, 1983. MR 833286, DOI 10.1017/CBO9780511608728
- F. Przytycki and M. Urbański, On the Hausdorff dimension of some fractal sets, Studia Math. 93 (1989), no. 2, 155–186. MR 1002918, DOI 10.4064/sm-93-2-155-186
- Yasunobu Shiota and Takeshi Sekiguchi, Hausdorff dimension of graphs of some Rademacher series, Japan J. Appl. Math. 7 (1990), no. 1, 121–129. MR 1039240, DOI 10.1007/BF03167894
- Jerzy Szulga, Hausdorff dimension of Weierstrass-Mandelbrot process, Statist. Probab. Lett. 56 (2002), no. 3, 301–307. MR 1892991, DOI 10.1016/S0167-7152(01)00195-X
- C. Tricot, Sur la classification des ensembles boréliens de mesure de Lebesgue nulle, Ph.D. thesis, Faculté des Sciences de l’Université de Genève, 1980.
- Claude Tricot Jr., Two definitions of fractional dimension, Math. Proc. Cambridge Philos. Soc. 91 (1982), no. 1, 57–74. MR 633256, DOI 10.1017/S0305004100059119
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108, DOI 10.1007/978-1-4612-5775-2
Bibliographic Information
- Yanick Heurteaux
- Affiliation: Laboratoire de Mathématiques pures, Université Blaise Pascal, F-63177 Aubière cedex, France
- Email: Yanick.Heurteaux@math.univ-bpclermont.fr
- Received by editor(s): July 8, 2002
- Published electronically: March 19, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 3065-3077
- MSC (2000): Primary 26A27, 28A80, 37A05; Secondary 60F20
- DOI: https://doi.org/10.1090/S0002-9947-03-03221-5
- MathSciNet review: 1974675