
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 355, Number 8, Pages 3227–3239
S 0002-9947(03)03287-2
Article electronically published on March 12, 2003

ON MEASURES OF MAXIMAL AND FULL DIMENSION
FOR POLYNOMIAL AUTOMORPHISMS OF C2

CHRISTIAN WOLF

Abstract. For a hyperbolic polynomial automorphism of C2, we show the
existence of a measure of maximal dimension and identify the conditions under
which a measure of full dimension exists.

1. Introduction

Let g be a hyperbolic polynomial automorphism of C2. For A ⊂ C2 we denote
by dimH A the Hausdorff dimension of A. Let ν be an invariant Borel probability
measure. We define the Hausdorff dimension of ν by

(1) dimH(ν) = inf{dimH A : ν(A) = 1}.
We define the quantity δ(g) by

(2) δ(g) = sup{dimH(ν)},
where the supremum is taken over all ergodic invariant Borel probability measures
with positive entropy.1 This quantity was introduced by Denker and Urbanski
[DU] in the context of rational maps on the Riemann sphere. They called it the
dynamical dimension of the map.

It is easy to see that the support of each measure considered in (2) is contained
in the Julia set J (see Section 2 for the definition). We denote by M(J, g|J) the set
of all ergodic invariant Borel probability measures supported on J .

If a measure ν ∈M(J, g|J) attains the supremum in (2), that is,

(3) dimH(ν) = δ(g),

we say that ν is a measure of maximal dimension for g.
McCluskey and Manning [MM] gave a heuristic argument for the existence of

a measure of maximal dimension in the case of Axiom A surface diffeomorphisms.
However, it was not known until this paper whether this argument can be extended
to a rigorous proof (see the remarks after Theorem 5.2 for more details). 2
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1Using Young’s formula [Y] and results by L. Barreira and the author [BW1] it is possible to

show that the value of δ(f) remains the same when the supremum is taken over all invariant Borel
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3228 CHRISTIAN WOLF

In this paper we study the existence of a measure of maximal dimension for
hyperbolic polynomial automorphisms of C2. Our main result is the following (see
Theorems 5.1, 5.2 and Corollary 5.4).

Theorem 1.1. Let g be a hyperbolic polynomial automorphism of C2. Then there
exists a measure of maximal dimension for g. The set of measures of maximal
dimension is finite.

The proof of this theorem uses the theory of thermodynamic formalism. Other
crucial ingredients are Young’s formula [Y], which relates the dimension of a mea-
sure to entropy and Lyapunov exponents, and dimension-theoretic results pertain-
ing to the dynamics of polynomial automorphisms of C2 (see [Wo1], [Wo2]). The
key idea is to extract a one-parameter family of potentials and to consider the cor-
responding family of equilibrium measures. We show that a measure of maximal
dimension necessarily belongs to this family of equilibrium measures. Furthermore,
if a measure ν maximizes Hausdorff dimension among these equilibrium measures,
then ν is a measure of maximal dimension.

We say that ν ∈M(J, g|J) is a measure of full dimension if

(4) dimH(ν) = dimH J.

We prove in Corollary 3.5 that there exists at most one measure of full dimension.
The next result gives a classification for the existence of a measure of full dimension
(see Theorems 4.1 and 4.2).

Theorem 1.2. Let g be a hyperbolic polynomial automorphism of C2. Then
i) If g is volume-preserving, then there exists a unique measure of full dimen-

sion for g.
ii) If g does not preserve volume, and if g admits a measure of full dimension,

then this measure is the unique measure of maximal entropy.

In the volume-preserving case the existence of a measure of full dimension has
already been shown by Friedland and Ochs [FO]. We provide an alternative proof
for this result in Theorem 4.1.

Theorem 1.2 indicates that in the case of non-volume-preserving maps, the ex-
istence of a measure of full dimension seems to be a rare phenomenon. Indeed, we
show in Theorem 4.2 that the existence of such a measure is equivalent to the fact
that the multipliers of all saddle points are of the same modulus (see equation (28)
for the precise statement). If this condition would be satisfied, then the parameter
defining the map g would provide solutions of a countable infinite set of algebraic
equations. From this point of view, such an example seems very likely to not exist.

In Section 4 we observe that there exists a dense open subset of hyperbolic
parameter space for which no measure of full dimension exists. This implies that

(5) δ(g) < dimH J

holds for these parameters.
In the last part of this paper, we analyze the dependence of δ(g) on the parameter

of the mapping. More precisely, we prove the following result (see Theorems 6.1
and 6.2).

Theorem 1.3. Let λ 7→ gλ be a holomorphic family of hyperbolic polynomial au-
tomorphisms of C2. Then λ 7→ δ(gλ) is continuous and plurisubharmonic.
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This paper is organized as follows. In Section 2 we present the basic definitions
and notation, and also list the standing assumptions of the paper. In Section 3
we introduce elements from dimension theory for hyperbolic polynomial automor-
phisms of C2 and provide the tools for the analysis of the existence of measures of
maximal and full dimension. Section 4 is devoted to the analysis of the existence
of a measure of full dimension. The existence of a measure of maximal dimension
is proved in Section 5. Finally, we study in Section 6 the dependence of δ(g) on
parameters.

It would be interesting to understand whether, or at least under which conditions,
a uniqueness result for the measure of maximal dimension holds. A partial answer
to this question is given in Corollary 3.5 where a uniqueness result is shown in the
case when a measure of full dimension exists.

2. Notation and Preliminaries

Let g be a polynomial automorphism of C2. We denote by deg (g) the maximum
of the polynomial degree of the components of g. The dynamical degree of g is
defined by

d = lim
n→∞

(deg (gn))1/n

(see [BS2], [FM]). We are interested in nontrivial dynamics, which occurs if and only
if d > 1. Friedland and Milnor showed in [FM] that every polynomial automorphism
of C2 with nontrivial dynamics is conjugate to a mapping of the form g = g1◦...◦gm,
where each gi is a generalized Hénon mapping. This means that gi has the form

(6) gi(z, w) = (w,Pi(w) + aiz),

where Pi is a complex polynomial of degree di ≥ 2 and ai is a nonzero complex
number. The dynamical degree d of such a map g is equal to d1 ·...·dm and therefore
coincides with the polynomial degree of g.

For g we define K± as the set of points in C2 with bounded forward/backward
orbits, K = K+ ∩ K−, J± = ∂K± and J = J+ ∩ J−. We refer to J± as the
positive/negative Julia set of g and call J the Julia set of g. The sets K and J are
compact.

Note that the function a = detDg is constant in C2. Therefore, we can restrict
our considerations to the volume-decreasing case (|a| < 1), and to the volume-
preserving case (|a| = 1), because in the volume-increasing case (|a| > 1), we can
consider g−1.

As pointed out in the introduction we assume in this paper that g is a hy-
perbolic mapping. This means that there exists a continuous invariant splitting
TJC2 = Eu ⊕ Es such that Dg|Eu is uniformly expanding and Dg|Es is uniformly
contracting. Hyperbolicity implies that we can associate with each point p ∈ J its
local unstable/stable manifold Wu/s

ε (p). Moreover, g is an Axiom A diffeomorphism
(see [BS1] for more details).

Standing Assumptions. We now list several conditions which will be assumed
throughout the entire paper:

i) g is a polynomial automorphism of C2 with dynamical degree d > 1;
ii) g is hyperbolic;
iii) g is volume-non-increasing.
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We recall that assumption iii) is actually not a restriction since we can also consider
g−1 (see above).

3. Elements from Dimension Theory

In this section we introduce elements from dimension theory for hyperbolic poly-
nomial automorphisms of C2 and provide the tools for the analysis of measures of
maximal and full dimension.

We start by introducing Lyapunov exponents. Let ν ∈M(J, g|J). The Julia set
J is a hyperbolic set of index 1 (see [BS1]). Therefore, by the multiplicative ergodic
theorem of Oseledec, there are Lyapunov exponents λ−ν < 0 < λ+

ν with respect to
ν (see e.g. [KH]). In particular, ν is a hyperbolic measure. We define the quantity

(7) Λ(ν) = lim
n→∞

1
n

∫
J

log ||Dgn||dν.

Similar to what was done for the measure of maximal entropy in [BS3], the pos-
itive Lyapunov exponent λ+

ν coincides with Λ(ν). Since g has constant Jacobian
determinant a, the negative Lyapunov exponent λ−ν is given by −Λ(ν) + log |a|. In
[Wo1] we derived the formula

(8) Λ(ν) =
∫
J

log ||Dg|Eu ||dν.

By Young’s formula [Y], we have for all ν ∈M(J, g|J) that

(9) dimH(ν) =
hν(g)
Λ(ν)

+
hν(g)

Λ(ν)− log |a| .

Here hν(g) denotes the measure-theoretic entropy of g with respect to ν.
Next we introduce topological pressure. Let C(J,R) denote the Banach space of

all continuous functions from J to R. The topological pressure of g|J , denoted by
P = P (g|J , .), is a mapping from C(J,R) to R (see [Wa] for the definition). The
variational principle provides the formula

(10) P (g|J , ϕ) = sup
ν∈M(J,g|J )

(
hν(g) +

∫
J

ϕdν

)
.

If a measure νϕ ∈M(J, g|J) achieves the supremum in equation (10), that is,

(11) P (g|J , ϕ) = hνϕ(g) +
∫
J

ϕdνϕ,

it is called an equilibrium measure of the potential ϕ.
The topological pressure has the following properties (see [R]).

i) The topological pressure is a convex function.
ii) If ϕ is a strictly negative function, then the function t 7→ P (g|J , tϕ) is

strictly decreasing.
iii) The topological pressure is a real analytic function on the subspace

of Hölder continuous functions, that is, when α > 0 is fixed, then
P (g|J , .)|Cα(J,R) is a real analytic function. Note that Cα cannot be re-
placed by C0.
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iv) If α > 0 and ϕ ∈ Cα(J,R), then there exists a uniquely defined equilibrium
measure νϕ ∈ M(J, g|J) of the potential ϕ. Furthermore, we have for all
ϕ, ψ ∈ Cα(J,R),

(12)
d

dt

∣∣∣∣
t=0

P (g|J , ϕ+ tψ) =
∫
J

ψdνϕ.

We have P (g|J , 0) = htop (g|J) (see e.g. [Wa]), where htop (g|J) denotes the topo-
logical entropy of g|J . Therefore, by property iv), the equilibrium measure of the
potential constant zero, ν0, is the unique measure of maximal entropy of g|J . The
map g has a unique measure of maximal entropy (see [BS1]); moreover, this measure
is supported on J . We conclude that ν0 is the unique measure of maximal entropy
of g. We now introduce potentials which are related to Lyapunov exponents. We
define

(13) φu/s : J → R, p 7→ log ||Dg(p)|
E
u/s
p
||

and the unstable/stable pressure functions

(14) Pu/s : R→ R, t 7→ P (g|J ,∓tφu/s).
The Julia set J is a hyperbolic set of index 1; thus the potentials ∓φu/s are strictly
negative. Therefore, property ii) of the topological pressure implies that the func-
tions P u/s are strictly decreasing.

Since φu/s are Hölder continuous (see [B]), we may conclude from property iii) of
the topological pressure that Pu/s are real analytic. Property iv) of the topological
pressure implies that there exist uniquely defined equilibrium measures ν∓tφu/s ∈
M(J, g|J) of the potentials ∓tφu/s.

We will need the following result about the relation between the unstable and
stable pressure functions.

Proposition 3.1 ([Wo2]). Pu(t) = P s(t)− t log |a|.

Lemma 3.2. ν−tφu = νtφs .

Proof. Let t ≥ 0. Then

P s(t) = Pu(t) + t log |a|

= hν−tφu (g) + t

(
−
∫

log ||Dg|Eu ||dν−tφu + log |a|
)

= hν−tφu (g) + t

(
lim
n→∞

1
n

∫
− log ||Dgn|Eu ||+ log |an|dν−tφu

)
= hν−tφu (g) + t

(
lim
n→∞

1
n

∫
log ||Dgn|Es ||dν−tφu

)
= hν−tφu (g) + t

∫
log ||Dg|Es ||dν−tφu

= hν−tφu (g) + t

∫
φsdν−tφu .(15)

The result follows from the uniqueness of the equilibrium measure of the potential
tφs. �

We will use in the remainder of this paper the notation νt = ν∓tφu/s . This
notation is justified by Lemma 3.2. We also write Λ(t) = Λ(νt) and h(t) = hνt(g),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3232 CHRISTIAN WOLF

and consider Λ and h as real-valued functions of t. Equations (8) and (11) imply
that

(16) Pu(t) = h(t)− tΛ(t).

Therefore, Proposition 3.1 implies that

(17) P s(t) = h(t)− t(Λ(t)− log |a|).

Proposition 3.3. Λ and h are real analytic. Furthermore,

(18)
dΛ
dt
≤ 0.

If Λ is not constant, then every zero of the derivative of Λ is isolated, and Λ is
strictly decreasing.

Proof. Let t0 ≥ 0 and let φu be as in (13). We define potentials ϕ = −t0φu, ψ =
−φu (here we use the notation of (12)). Therefore, application of equations (8) and
(12) implies that

(19)
dPu

dt
(t0) = −Λ(νt0) = −Λ(t0).

Since Pu is real analytic, we obtain that Λ is also real analytic. We conclude from
(16) that h is also real analytic. The convexity of Pu implies that

(20)
d2Pu

dt2
≥ 0;

hence

(21)
dΛ
dt
≤ 0.

Finally, if Λ is not constant, then the uniqueness theorem for real analytic functions,
applied to the derivative of Λ, implies that all zeros of the derivative of Λ are
isolated. Therefore, Λ is strictly decreasing. �

Hausdorff dimensions of the measures νt. We use the notation ∆(t) =
dimH(νt). Equation (9) yields

(22) ∆(t) =
h(t)
Λ(t)

+
h(t)

Λ(t)− log |a| .

Thus, ∆ is also a real analytic function. Equations (16), (17) and Proposition 3.1
imply that

(23) ∆(t) = 2t+
Pu(t)
Λ(t)

+
Pu(t) + t log |a|

Λ(t)− log |a| .

From an elementary calculation we obtain the following formula for the derivative
of ∆:

(24)
d∆
dt

(t0) = −
dΛ
dt (t0)

[
Pu(t0)(Λ(t0)− log |a|)2 + (Pu(t0) + t0 log |a|)Λ(t0)2

]
Λ(t0)2(Λ(t0)− log |a|)2

.

Hausdorff dimension of J. The following result due to Verjovsky and Wu pro-
vides a formula for the Hausdorff dimension of the unstable/stable slice in terms of
the zeros of the pressure functions.
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Theorem 3.4 ([VW]). Let p ∈ J . Then tu/s = dimHW
u/s
ε (p)∩J does not depend

on p ∈ J . Furthermore, tu/s is given by the unique solution of

(25) Pu/s(t) = 0.

Equation (25) is called the Bowen-Ruelle formula. We refer to tu/s as the Haus-
dorff dimension of the unstable/stable slice.

In [Wo1] we proved the formula

(26) dimH J = tu + ts = sup
ν∈M(J,g|J )

(
hν(g)
Λ(ν)

)
+ sup
ν∈M(J,g|J )

(
hν(g)

Λ(ν)− log |a|

)
,

where each of the suprema on the right-hand side of the equation is uniquely at-
tained by the measures νtu and νts , respectively. Hence

(27) dimH J =
h(tu)
Λ(tu)

+
h(ts)

Λ(ts)− log |a| .

Equation (27) and the uniqueness of the measures νtu , νts in equation (26) imply
that, if there exists a measure of full dimension, then it already coincides with νtu

and νts . Thus, we have the following result.

Corollary 3.5. Assume m is a measure of full dimension for g. Then m = νtu =
νts . In particular, there exists at most one measure of full dimension.

4. Measures of Full Dimension

In this section we identify the conditions under which a measure of full dimension
exists. We start with the volume-preserving case.

Theorem 4.1. Let g be volume-preserving. Then tu = ts, and νtu is a measure of
full dimension for g.

Proof. We have |a| = 1. Therefore Proposition 3.1 implies that Pu = P s. Thus,
Theorem 3.4 yields tu = ts. Therefore, by equations (9) and (27), we conclude that
dimH(νtu) = dimH J , which implies that νtu is a measure of full dimension. �

Remark. As noted in the introduction, in the volume-preserving case, the existence
of a measure of full dimension was already shown by Friedland and Ochs [FO].
They proved that the existence of a measure of full dimension follows from the
fact that | detDgn(p)| = 1 holds for every periodic point p with period n. They
also observed that in this case the measure of full dimension is equivalent to the
t-dimensional Hausdorff measure, where t is the Hausdorff dimension of J .

We now consider the volume-decreasing case. Let S denote the set of all saddle
points of g. Note that J = S, see [BS1]. For p ∈ S with period n(p) we denote
by λu/s(p) the eigenvalues of Dgn(p)(p), where |λs(p)| < 1 < |λu(p)|. In the next
theorem we provide equivalent conditions for the existence of a measure of full
dimension.

Theorem 4.2. Assume g is volume-decreasing. Then the following are equivalent.
i) g admits a measure of full dimension.
ii) The unstable pressure function Pu is affine.
iii) The stable pressure function P s is affine.
iv) The measure of maximal entropy is a measure of full dimension for g.
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v) The quantity

(28) |λu(p)|
1

n(p)

is independent of the periodic point p ∈ S.

Proof. ii)⇔ iii) follows from Proposition 3.1.
i) ⇒ ii) Let us assume that g admits a measure of full dimension. It is shown

in [Wo2] that ts < tu. Corollary 3.5 implies that νtu = νts is the measure of full
dimension. So Λ(tu) = Λ(ts), and this in turn implies by Proposition 3.3 that the
function Λ(t) is constant. Therefore, equation (19) implies that Pu is affine.
ii) + iii) ⇒ iv) Recall that ν0 is the unique measure of maximal entropy for g,

see Section 3. The topological entropy of g|J is equal to log d (see [BS3]). Thus
Pu(0) = P s(0) = log d. Equation 19 and Proposition 3.1 imply

dPu

dt
(0) = −Λ(0),(29)

dP s

dt
(0) = −Λ(0) + log |a|.(30)

Since Pu and P s are affine, Theorem 3.4 and equation (26) imply

(31) dimH J =
log d
Λ(0)

+
log d

Λ(0)− log |a| .

But by Young’s formula (9), the right-hand side of (31) is equal to dimH(ν0). Thus,
ν0 is a measure of full dimension.
iv) ⇒ v) If ν0 is a measure of full dimension for g, then, by Corollary 3.5, we

have ν0 = vtu . Moreover, it follows from Theorem 3.4 that tu > 0. Therefore, v)
follows from Proposition 4.5 of [B].
v)⇒ ii) follows again from Proposition 4.5 of [B].
Finally, iv)⇒ i) is trivial. �

Remark. As mentioned in the introduction, it is very likely that for volume-decreas-
ing maps a measure of full dimension never exists. This can be seen by using
property v) of Theorem 4.2, because if such a map g exists, then the parameter
defining g provides solutions of a countable infinite set of algebraic equations, which
is indeed a very strong conclusion.

Let us assume that a volume-decreasing map g admits a measure of full dimen-
sion. Then it follows by equation (28) that g belongs to a real codimension one
algebraic subset of parameter space. Using a perturbation argument, it is not too
hard to see that we can find arbitrarily close to g a map g′ for which (28) does not
hold; in particular, g′ has no measure of full dimension. Here we mean close with
respect to the topology on hyperbolic parameter space induced by the parameter
of the mapping (see [Wo1] for details). On the other hand, if g admits no measure
of full dimension, then (28) does not hold for g. It can be easily shown that there
is a neighborhood of g such that for each map g′ in this neighborhood (28) does
not hold. Therefore, there exists a dense open subset of parameters admitting no
measure of full dimension. We leave the details to the reader.
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5. Measures of Maximal Dimension

In this section we establish the existence of a measure of maximal dimension.
We first consider the volume-preserving case. In this situation it follows from

Corollary 3.5 and Theorem 4.1 that νtu is the unique measure of full dimension
for g. By definition, every measure of full dimension is also a measure of maximal
dimension. Therefore, we obtain the following.

Theorem 5.1. Assume g is volume-preserving. Then νtu is the unique measure of
maximal dimension for g.

We now consider the volume-decreasing case. The following theorem is the main
result of this paper.

Theorem 5.2. Assume g is volume-decreasing. Then there exists a measure of
maximal dimension for g. If m is a measure of maximal dimension for g, then
there exists ts < t < tu such that m is the equilibrium measure of the potential
−tφu, that is, m = νt.

Proof. Since g is volume-decreasing, we have ts < tu (see [Wo2]).
We first assume that g admits a measure of full dimension. In this case applica-

tion of Theorem 4.2 and Proposition 4.5 of [B] implies that νt does not depend on t.
Moreover, νt is the unique measure of full and therefore also of maximal dimension.
Thus, the theorem holds.

We now assume that f has no measure of full dimension. Thus, by Theorem 4.2
the functions Pu/s are not affine. �

Assertion 1. There exists ε > 0 such that ∆ is strictly increasing on [0, ts + ε)
and strictly decreasing on (tu − ε,∞).

Proof of Assertion 1. Theorem 3.4 and the fact that Pu/s are strictly decreasing
functions [property ii) of the topological pressure] imply that P s(t) > 0 for all
t ∈ [0, ts). Analogously we have Pu(t) > 0 for all t ∈ [0, tu). We conclude from
Proposition 3.3, equation (24) and an elementary continuity argument that there
exists ε > 0 such that

(32)
d∆
dt
≥ 0

in [0, ts+ ε), and all zeros of the derivative of ∆ in [0, ts+ ε) are isolated. Therefore,
∆ is strictly increasing in [0, ts + ε). A similar argument shows that there exists
ε > 0 such that ∆ is strictly decreasing in (tu − ε,∞).

Assertion 1 implies that there exists t∗ ∈ [ts + ε, tu − ε] such that

(33) dimH(νt∗) = sup
t≥0

∆(t).

�

Assertion 2. The measure νt∗ is a measure of maximal dimension.

Proof of Assertion 2. Let (mk)k∈N be a sequence in M(J, g|J) such that

(34) lim
k→∞

dimH(mk) = δ(g).

By Assertion 1, we may assume, without loss of generality, that dimH(ν0) = ∆(0) <
dimH(mk) for all k ∈ N. Recall that ν0 is the unique measure of maximal entropy
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of g (see Section 3). We now may conclude by Young’s formula (9) that

(35) Λ(ν0) > Λ(mk)

for all k ∈ N. Again by Assertion 1, we may assume, without loss of generality,
that dimH(νtu) = ∆(tu) < dimH(mk) for all k ∈ N. Equation (26) implies that

(36)
hmk(g)
Λ(mk)

<
h(tu)
Λ(tu)

for all k ∈ N. Therefore, Young’s formula (9) implies that

(37)
hmk(g)

Λ(mk)− log |a| >
h(tu)

Λ(tu)− log |a|
for all k ∈ N. Equations (36) and (37) imply that hmk(g) > h(tu), and therefore
again by equation (36) we obtain

(38) Λ(mk) > Λ(tu)

for all k ∈ N. Since Λ is continuous, equations (35) and (38) imply that for all
k ∈ N there exists tk ∈ (0, tu) such that

(39) Λ(mk) = Λ(tk).

Thus, the variational principle (10) implies that

(40) hmk(g) ≤ h(tk);

hence

(41) dimH(mk) ≤ ∆(tk)

for all k ∈ N. This implies that

(42) dimH(mk) ≤ dimH(νt∗)

for all k ∈ N. We conclude that νt∗ is a measure of maximal dimension.

To complete the proof of the theorem we have to show the following.

Assertion 3. For every measure m of maximal dimension there exists ts < t < tu

such that m is the equilibrium measure of the potential −tφu.

Proof of Assertion 3. Let m be a measure of maximal dimension. We apply to m
(instead of mk) the same argument as in the proof of Assertion 2. This implies
that there exists t ∈ (0, tu) such that Λ(m) = Λ(t). Since dimH(m) ≥ ∆(t), we
may deduce by equation (9) that hm(g) ≥ h(t). On the other hand, since νt is the
equilibrium measure of the potential −tφu, we may conclude by (10) and (11) that
hm(g) ≤ h(t). Hence hm(g) = h(t). Therefore, the uniqueness of the equilibrium
measure of the potential −tφu implies that m = νt. Finally, Assertion 1 implies
that t ∈ (ts, tu). This completes the proof. �
Remarks. The following heuristic argument was given by McCluskey and Manning
[MM] to state the existence of a measure of maximal dimension in the case of C2

axiom A diffeomorphisms of real surfaces. Since the entropy map is upper semi-
continuous, it can be shown that the map ν 7→ dimH(ν), defined on the set of all
ergodic invariant measures, is also upper semi-continuous. It is now suggested in
[MM] that this implies the existence of a measure of maximal dimension. To make
this argument rigorous we need to show that there exists a sequence of ergodic
invariant measures mk with dimH(mk) → δ(g) having an ergodic weak* limit.
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Whether this holds is not clear since the set of all ergodic invariant measures is
dense in the set of all invariant measures with respect to the weak* topology; see
Proposition 21.9 in [DGS]. In particular, the set of all ergodic invariant measures
is not closed.

In the following we describe properties of the measures of maximal dimension.

Corollary 5.3. Assume that g admits no measure of full dimension. Let t ≥ 0 be
such that νt is a measure of maximal dimension. Then

(43) δ(g) = 2t+
Pu(t) log |a|

Λ(t)2
.

Proof. By Proposition 3.3, equation (24) and Theorem 5.2, a necessary condition
for νt being a measure of maximal dimension is

(44) Pu(t)(Λ(t)− log |a|)2 + (Pu(t) + t log |a|)Λ(t)2 = 0.

Therefore, the result follows from equation (23). �
Corollary 5.4. The set of all measures of maximal dimension is finite.

Proof. Assume first that g admits a measure of full dimension. Then, this measure
is the unique measure of maximal dimension. If g has no measure of full dimension,
then the function ∆ is a non-constant real analytic function on [0,∞). Therefore,
it follows from the uniqueness theorem for real analytic functions that ∆ has only
finitely many maxima in [ts, tu]. The result follows from Theorem 5.2. �
Corollary 5.5. Every measure ν of maximal dimension is Bernoulli.

Proof. Since g|J is topological mixing (see [BS1]), the result follows from the fact
that ν is an equilibrium measure of a Hölder continuous potential (see [B], Thm.
4.1). �

6. Dependence on Parameters

Let A denote an open subset of Ck and let (gλ)λ∈A be a holomorphic family
of hyperbolic polynomial automorphisms of C2 of fixed dynamical degree d > 1.
We denote by Jλ the Julia set, by aλ the Jacobian determinant, and by P

u/s
λ the

unstable/stable pressure functions of gλ. We also write ∆λ(t) instead of ∆(t). First,
we show that δ(g) depends continuously on the parameter of the mapping.

Theorem 6.1. The function λ 7→ δ(gλ) is continuous in A.

Proof. Let λ0 ∈ A. The result of [VW] implies that there exist ε > 0 and a real
analytic function

(45) P : B(λ0, ε)× [0,∞)→ R,

such that P(λ, .) = Puλ for all λ ∈ B(λ0, ε). Therefore, equations (19) and (23)
imply that

(46) D : B(λ0, ε)× [0,∞)→ R, (λ, t) 7→ ∆λ(t)

is also a real analytic function. Now we may conclude by Theorem 5.1 and Theorem
5.2 that

(47) δ(gλ) = max
t∈[0,2]

D(λ, t).

The result follows by an elementary continuity argument. �
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Remark. McCluskey and Manning [MM] considered C2 Axiom A diffeomorphisms
of real surfaces. They showed that for these mappings δ(g) depends continuously
on the mapping with respect to the C2 topology.

Finally, we show that δ(g) depends plurisubharmonically on the parameter of
the mapping.

Theorem 6.2. The function λ 7→ δ(gλ) is plurisubharmonic in A.

Proof. Let g0 ∈ A and let L be a complex line in Ck containing g0. Then there
exists a holomorphic family (gλ)λ∈D, where D is a disk with center 0 in C such that
{gλ : λ ∈ D} is a neighborhood of g0 in L ∩A. If the radius of D is small enough,
then there exists a family (κλ)λ∈D, where each κλ is the uniquely defined conjugacy
between g0|J0 and gλ|Jλ . Therefore, Tλ = (κλ)∗ defines a family of bijections
from M(J0, g0|J0) to M(Jλ, gλ|Jλ). Moreover, we have hν(g0) = hTλ(ν)(gλ) for all
ν ∈ M(J0, g0|J0) and all λ ∈ D (see [Wo1] for the details). In [Wo1] we showed
that if ν ∈ M(J0, g0|J0) is fixed, then λ 7→ Λ(Tλ(ν)) is a harmonic function in D.
We conclude by Young’s formula (9) that

(48) δ(gλ) = sup
ν∈M(J0,g0|J0 )

(
hν(g0)

Λ(Tλ(ν))
+

hν(g0)
Λ(Tλ(ν)) − log |aλ|

)
.

The functions λ 7→ Λ(Tλ(ν)), λ 7→ Λ(Tλ(ν)) − log |aλ| are harmonic in D. Note
that x 7→ x−1 is a convex function on R+. This implies that the functions λ 7→
Λ(Tλ(ν))−1, λ 7→ (Λ(Tλ(ν)) − log |aλ|)−1 are subharmonic in D. The continuous
function λ 7→ δ(gλ) is therefore given by the supremum over a family of subharmonic
functions. We conclude that the function λ 7→ δ(gλ) is subharmonic in D. This
completes the proof. �
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