Seshadri constants on Jacobian of curves
HTML articles powered by AMS MathViewer
- by Jian Kong
- Trans. Amer. Math. Soc. 355 (2003), 3175-3180
- DOI: https://doi.org/10.1090/S0002-9947-03-03305-1
- Published electronically: April 17, 2003
- PDF | Request permission
Abstract:
We compute the Seshadri constants on the Jacobian of hyperelliptic curves, as well as of curves with genus three and four. For higher genus curves we conclude that if the Seshadri constants of their Jacobian are less than 2, then the curves must be hyperelliptic.References
- Lawrence Ein and Robert Lazarsfeld, Seshadri constants on smooth surfaces, Astérisque 218 (1993), 177–186. Journées de Géométrie Algébrique d’Orsay (Orsay, 1992). MR 1265313
- E. Izadi, The geometric structure of ${\scr A}_4$, the structure of the Prym map, double solids and $\Gamma _{00}$-divisors, J. Reine Angew. Math. 462 (1995), 93–158. MR 1329904, DOI 10.1515/crll.1995.462.93
- Herbert Lange and Christina Birkenhake, Complex abelian varieties, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 302, Springer-Verlag, Berlin, 1992. MR 1217487, DOI 10.1007/978-3-662-02788-2
- Robert Lazarsfeld, Lengths of periods and Seshadri constants of abelian varieties, Math. Res. Lett. 3 (1996), no. 4, 439–447. MR 1406008, DOI 10.4310/MRL.1996.v3.n4.a1
- Michael Nakamaye, Seshadri constants on abelian varieties, Amer. J. Math. 118 (1996), no. 3, 621–635. MR 1393263, DOI 10.1353/ajm.1996.0028
- A. Steffens, Remarks on Seshadri constants, Math. Z. 227 (1998), no. 3, 505–510. MR 1612681, DOI 10.1007/PL00004388
- Gerald E. Welters, The surface $C-C$ on Jacobi varieties and 2nd order theta functions, Acta Math. 157 (1986), no. 1-2, 1–22. MR 857677, DOI 10.1007/BF02392589
Bibliographic Information
- Jian Kong
- Affiliation: Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21218
- Email: jkong@math.jhu.edu
- Received by editor(s): August 1, 2002
- Received by editor(s) in revised form: August 26, 2002
- Published electronically: April 17, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 3175-3180
- MSC (2000): Primary 14H40; Secondary 14K12
- DOI: https://doi.org/10.1090/S0002-9947-03-03305-1
- MathSciNet review: 1974680