Explicit Lower bounds for residues at $s=1$ of Dedekind zeta functions and relative class numbers of CM-fields
HTML articles powered by AMS MathViewer
- by Stéphane Louboutin
- Trans. Amer. Math. Soc. 355 (2003), 3079-3098
- DOI: https://doi.org/10.1090/S0002-9947-03-03313-0
- Published electronically: April 25, 2003
- PDF | Request permission
Abstract:
Let $S$ be a given set of positive rational primes. Assume that the value of the Dedekind zeta function $\zeta _K$ of a number field $K$ is less than or equal to zero at some real point $\beta$ in the range ${1\over 2} <\beta <1$. We give explicit lower bounds on the residue at $s=1$ of this Dedekind zeta function which depend on $\beta$, the absolute value $d_K$ of the discriminant of $K$ and the behavior in $K$ of the rational primes $p\in S$. Now, let $k$ be a real abelian number field and let $\beta$ be any real zero of the zeta function of $k$. We give an upper bound on the residue at $s=1$ of $\zeta _k$ which depends on $\beta$, $d_k$ and the behavior in $k$ of the rational primes $p\in S$. By combining these two results, we obtain lower bounds for the relative class numbers of some normal CM-fields $K$ which depend on the behavior in $K$ of the rational primes $p\in S$. We will then show that these new lower bounds for relative class numbers are of paramount importance for solving, for example, the exponent-two class group problem for the non-normal quartic CM-fields. Finally, we will prove Brauer-Siegel-like results about the asymptotic behavior of relative class numbers of CM-fields.References
- Steven Arno, The imaginary quadratic fields of class number $4$, Acta Arith. 60 (1992), no. 4, 321–334. MR 1159349, DOI 10.4064/aa-60-4-321-334
- A. Baker, A remark on the class number of quadratic fields, Bull. London Math. Soc. 1 (1969), 98–102. MR 241383, DOI 10.1112/blms/1.1.98
- A. Baker, Imaginary quadratic fields with class number $2$, Ann. of Math. (2) 94 (1971), 139–152. MR 299583, DOI 10.2307/1970739
- S. Bessassi, Bounds for the degrees of CM-fields of class number one, Acta Arith. 106 (2003), 213–245.
- Ezra Brown and Charles J. Parry, The imaginary bicyclic biquadratic fields with class-number $1$, J. Reine Angew. Math. 266 (1974), 118–120. MR 340219, DOI 10.1515/crll.1974.266.118
- Richard Foote and V. Kumar Murty, Zeros and poles of Artin $L$-series, Math. Proc. Cambridge Philos. Soc. 105 (1989), no. 1, 5–11. MR 966135, DOI 10.1017/S0305004100001316
- Kenneth Hardy, Richard H. Hudson, David Richman, and Kenneth S. Williams, Determination of all imaginary cyclic quartic fields with class number $2$, Trans. Amer. Math. Soc. 311 (1989), no. 1, 1–55. MR 929663, DOI 10.1090/S0002-9947-1989-0929663-9
- Kuniaki Horie and Mitsuko Horie, CM-fields and exponents of their ideal class groups, Acta Arith. 55 (1990), no. 2, 157–170. MR 1061636, DOI 10.4064/aa-55-2-157-170
- J. Hoffstein and N. Jochnowitz, On Artin’s conjecture and the class number of certain CM fields. I, II, Duke Math. J. 59 (1989), no. 2, 553–563, 565–584. MR 1016903, DOI 10.1215/S0012-7094-89-05925-5
- Jeffrey Hoffstein, Some analytic bounds for zeta functions and class numbers, Invent. Math. 55 (1979), no. 1, 37–47. MR 553994, DOI 10.1007/BF02139701
- Serge Lang, Algebraic number theory, 2nd ed., Graduate Texts in Mathematics, vol. 110, Springer-Verlag, New York, 1994. MR 1282723, DOI 10.1007/978-1-4612-0853-2
- F. Lemmermeyer, S. Louboutin, and R. Okazaki, The class number one problem for some non-abelian normal CM-fields of degree 24, J. Théor. Nombres Bordeaux 11 (1999), no. 2, 387–406 (English, with English and French summaries). MR 1745886, DOI 10.5802/jtnb.257
- Stéphane Louboutin and Ryotaro Okazaki, The class number one problem for some non-abelian normal CM-fields of $2$-power degrees, Proc. London Math. Soc. (3) 76 (1998), no. 3, 523–548. MR 1616805, DOI 10.1112/S0024611598000318
- Stéphane Louboutin, Majorations explicites de $|L(1,\chi )|$, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), no. 1, 11–14 (French, with English and French summaries). MR 1198740, DOI 10.1016/S1631-073X(02)02333-6
- Stéphane Louboutin, Lower bounds for relative class numbers of CM-fields, Proc. Amer. Math. Soc. 120 (1994), no. 2, 425–434. MR 1169041, DOI 10.1090/S0002-9939-1994-1169041-0
- Stéphane Louboutin, Determination of all quaternion octic CM-fields with class number $2$, J. London Math. Soc. (2) 54 (1996), no. 2, 227–238. MR 1405052, DOI 10.1112/jlms/54.2.227
- Stéphane Louboutin, A finiteness theorem for imaginary abelian number fields, Manuscripta Math. 91 (1996), no. 3, 343–352. MR 1416716, DOI 10.1007/BF02567959
- Stéphane Louboutin, The class number one problem for the non-abelian normal CM-fields of degree $16$, Acta Arith. 82 (1997), no. 2, 173–196. MR 1477509, DOI 10.4064/aa-82-2-173-196
- Stéphane Louboutin, Majorations explicites du résidu au point 1 des fonctions zêta de certains corps de nombres, J. Math. Soc. Japan 50 (1998), no. 1, 57–69 (French). MR 1484611, DOI 10.2969/jmsj/05010057
- Stéphane Louboutin, Explicit bounds for residues of Dedekind zeta functions, values of $L$-functions at $s=1$, and relative class numbers, J. Number Theory 85 (2000), no. 2, 263–282. MR 1802716, DOI 10.1006/jnth.2000.2545
- Stéphane Louboutin, Explicit upper bounds for residues of Dedekind zeta functions and values of $L$-functions at $s=1$, and explicit lower bounds for relative class numbers of CM-fields, Canad. J. Math. 53 (2001), no. 6, 1194–1222. MR 1863848, DOI 10.4153/CJM-2001-045-5
- S. Louboutin, Majorations explicites de $\vert L(1,\chi )\vert$ (quatrième partie), C. R. Acad. Sci. Paris 334 (2002), 625–628.
- H. W. Lenstra, J. Pila and C. Pomerance, A hyperelliptic smoothness test, II, Proc. London Math. Soc. 84 (2002), 105–146.
- S. Louboutin, Y.-S. Yang and S.-H. Kwon, The non-normal quartic CM-fields and the dihedral octic CM-fields with ideal class groups of exponent $\le 2$, Preprint (2000).
- M. Ram Murty, An analogue of Artin’s conjecture for abelian extensions, J. Number Theory 18 (1984), no. 3, 241–248. MR 746861, DOI 10.1016/0022-314X(84)90059-3
- V. Kumar Murty, Class numbers of CM-fields with solvable normal closure, Compositio Math. 127 (2001), no. 3, 273–287. MR 1845038, DOI 10.1023/A:1017589432526
- H. L. Montgomery and P. J. Weinberger, Notes on small class numbers, Acta Arith. 24 (1973/74), 529–542. MR 357373, DOI 10.4064/aa-24-5-529-542
- A. M. Odlyzko, Some analytic estimates of class numbers and discriminants, Invent. Math. 29 (1975), no. 3, 275–286. MR 376613, DOI 10.1007/BF01389854
- Joseph Oesterlé, Nombres de classes des corps quadratiques imaginaires, Astérisque 121-122 (1985), 309–323 (French). Seminar Bourbaki, Vol. 1983/84. MR 768967
- Ryotaro Okazaki, Inclusion of CM-fields and divisibility of relative class numbers, Acta Arith. 92 (2000), no. 4, 319–338. MR 1760241, DOI 10.4064/aa-92-4-319-338
- J. Pintz, On Siegel’s theorem, Acta Arith. 24 (1973/74), 543–551. MR 337826, DOI 10.4064/aa-24-5-543-551
- J. Pintz, Elementary methods in the theory of $L$-functions. II. On the greatest real zero of a real $L$-function, Acta Arith. 31 (1976), no. 3, 273–289. MR 485730, DOI 10.4064/aa-31-3-273-289
- Olivier Ramaré, Approximate formulae for $L(1,\chi )$, Acta Arith. 100 (2001), no. 3, 245–266. MR 1865385, DOI 10.4064/aa100-3-2
- C. L. Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arith. 1 (1935), 83–86.
- H. M. Stark, A complete determination of the complex quadratic fields of class-number one, Michigan Math. J. 14 (1967), 1–27. MR 222050, DOI 10.1307/mmj/1028999653
- H. M. Stark, On complex quadratic fields wth class-number two, Math. Comp. 29 (1975), 289–302. MR 369313, DOI 10.1090/S0025-5718-1975-0369313-X
- H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135–152. MR 342472, DOI 10.1007/BF01405166
- Kôji Uchida, Imaginary abelian number fields with class number one, Tohoku Math. J. (2) 24 (1972), 487–499. MR 321904, DOI 10.2748/tmj/1178241490
- Lawrence C. Washington, Introduction to cyclotomic fields, 2nd ed., Graduate Texts in Mathematics, vol. 83, Springer-Verlag, New York, 1997. MR 1421575, DOI 10.1007/978-1-4612-1934-7
- Hee-Sun Yang and Soun-Hi Kwon, The non-normal quartic CM-fields and the octic dihedral CM-fields with relative class number two, J. Number Theory 79 (1999), no. 2, 175–193. MR 1728146, DOI 10.1006/jnth.1999.2421
Bibliographic Information
- Stéphane Louboutin
- Affiliation: Institut de Mathématiques de Luminy, UPR 9016, 163 avenue de Luminy, Case 907, 13288 Marseille Cedex 9, France
- Email: loubouti@iml.univ-mrs.fr
- Received by editor(s): April 23, 2002
- Received by editor(s) in revised form: January 6, 2003
- Published electronically: April 25, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 3079-3098
- MSC (2000): Primary 11R42; Secondary 11R29
- DOI: https://doi.org/10.1090/S0002-9947-03-03313-0
- MathSciNet review: 1974676
Dedicated: Dedicated to Jacqueline G.