Sharp Fourier type and cotype with respect to compact semisimple Lie groups
HTML articles powered by AMS MathViewer
- by José García-Cuerva, José Manuel Marco and Javier Parcet
- Trans. Amer. Math. Soc. 355 (2003), 3591-3609
- DOI: https://doi.org/10.1090/S0002-9947-03-03139-8
- Published electronically: May 15, 2003
- PDF | Request permission
Abstract:
Sharp Fourier type and cotype of Lebesgue spaces and Schatten classes with respect to an arbitrary compact semisimple Lie group are investigated. In the process, a local variant of the Hausdorff-Young inequality on such groups is given.References
- M. E. Andersson, The Hausdorff-Young inequality and Fourier type, Ph.D. Thesis, Uppsala (1993).
- K. I. Babenko, An inequality in the theory of Fourier integrals, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 531–542 (Russian). MR 0138939
- William Beckner, Inequalities in Fourier analysis, Ann. of Math. (2) 102 (1975), no. 1, 159–182. MR 385456, DOI 10.2307/1970980
- William Beckner, Pitt’s inequality and the uncertainty principle, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1897–1905. MR 1254832, DOI 10.1090/S0002-9939-1995-1254832-9
- Edward G. Effros and Zhong-Jin Ruan, Operator spaces, London Mathematical Society Monographs. New Series, vol. 23, The Clarendon Press, Oxford University Press, New York, 2000. MR 1793753
- Gerald B. Folland, A course in abstract harmonic analysis, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. MR 1397028
- William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991. A first course; Readings in Mathematics. MR 1153249, DOI 10.1007/978-1-4612-0979-9
- J. García-Cuerva and J. Parcet, Vector-valued Hausdorff-Young inequality on compact groups, Submitted for publication.
- J. García-Cuerva and J. Parcet, Quantized orthonormal systems: A non-commutative Kwapień theorem, Studia Math. 155 (2003), $273-294.$
- R. A. Kunze, $L_{p}$ Fourier transforms on locally compact unimodular groups, Trans. Amer. Math. Soc. 89 (1958), 519–540. MR 100235, DOI 10.1090/S0002-9947-1958-0100235-1
- Gilles Pisier, The operator Hilbert space $\textrm {OH}$, complex interpolation and tensor norms, Mem. Amer. Math. Soc. 122 (1996), no. 585, viii+103. MR 1342022, DOI 10.1090/memo/0585
- Gilles Pisier, Non-commutative vector valued $L_p$-spaces and completely $p$-summing maps, Astérisque 247 (1998), vi+131 (English, with English and French summaries). MR 1648908
- J. L. Walsh, On interpolation by functions analytic and bounded in a given region, Trans. Amer. Math. Soc. 46 (1939), 46–65. MR 55, DOI 10.1090/S0002-9947-1939-0000055-0
- Barry Simon, Representations of finite and compact groups, Graduate Studies in Mathematics, vol. 10, American Mathematical Society, Providence, RI, 1996. MR 1363490, DOI 10.1090/gsm/010
- Per Sjölin, A remark on the Hausdorff-Young inequality, Proc. Amer. Math. Soc. 123 (1995), no. 10, 3085–3088. MR 1273525, DOI 10.1090/S0002-9939-1995-1273525-5
Bibliographic Information
- José García-Cuerva
- Affiliation: Department of Mathematics, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Email: jose.garcia-cuerva@uam.es
- José Manuel Marco
- Affiliation: Department of Mathematics, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Javier Parcet
- Affiliation: Department of Mathematics, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Email: javier.parcet@uam.es
- Received by editor(s): March 22, 2002
- Published electronically: May 15, 2003
- Additional Notes: Research supported in part by the European Commission via the TMR Network “Harmonic Analysis” and by Project BFM 2001/0189, Spain
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 3591-3609
- MSC (2000): Primary 43A77; Secondary 22E46, 46L07
- DOI: https://doi.org/10.1090/S0002-9947-03-03139-8
- MathSciNet review: 1990163