A path-transformation for random walks and the Robinson-Schensted correspondence
HTML articles powered by AMS MathViewer
- by Neil O’Connell
- Trans. Amer. Math. Soc. 355 (2003), 3669-3697
- DOI: https://doi.org/10.1090/S0002-9947-03-03226-4
- Published electronically: May 29, 2003
- PDF | Request permission
Abstract:
The author and Marc Yor recently introduced a path-transformation $G^{(k)}$ with the property that, for $X$ belonging to a certain class of random walks on $\mathbb {Z}_+^k$, the transformed walk $G^{(k)}(X)$ has the same law as the original walk conditioned never to exit the Weyl chamber $\{x:\ x_1\le \cdots \le x_k\}$. In this paper, we show that $G^{(k)}$ is closely related to the Robinson-Schensted algorithm, and use this connection to give a new proof of the above representation theorem. The new proof is valid for a larger class of random walks and yields additional information about the joint law of $X$ and $G^{(k)}(X)$. The corresponding results for the Brownian model are recovered by Donsker’s theorem. These are connected with Hermitian Brownian motion and the Gaussian Unitary Ensemble of random matrix theory. The connection we make between the path-transformation $G^{(k)}$ and the Robinson-Schensted algorithm also provides a new formula and interpretation for the latter. This can be used to study properties of the Robinson-Schensted algorithm and, moreover, extends easily to a continuous setting.References
- François Louis Baccelli, Guy Cohen, Geert Jan Olsder, and Jean-Pierre Quadrat, Synchronization and linearity, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, John Wiley & Sons, Ltd., Chichester, 1992. An algebra for discrete event systems. MR 1204266
- François Baccelli and William A. Massey, A sample path analysis of the $M/M/1$ queue, J. Appl. Probab. 26 (1989), no. 2, 418–422. MR 1000302, DOI 10.1017/s002190020002742x
- F. Baccelli and W.A. Massey. A transient analysis of the two-node series Jackson network. INRIA Rapport de Recherche No. 852 (1988).
- Jinho Baik, Percy Deift, and Kurt Johansson, On the distribution of the length of the longest increasing subsequence of random permutations, J. Amer. Math. Soc. 12 (1999), no. 4, 1119–1178. MR 1682248, DOI 10.1090/S0894-0347-99-00307-0
- Yu. Baryshnikov, GUEs and queues, Probab. Theory Related Fields 119 (2001), no. 2, 256–274. MR 1818248, DOI 10.1007/PL00008760
- A. Berenstein and A.N. Kirillov. The Robinson-Schensted-Knuth bijection, quantum matrices and piecewise linear combinatorics. To appear in: Proceedings of the 13th International Conference on Formal Power Series and Algebraic Combinatorics, Arizona, 2001.
- Philippe Biane, Quelques propriétés du mouvement brownien dans un cone, Stochastic Process. Appl. 53 (1994), no. 2, 233–240 (French, with French summary). MR 1302912, DOI 10.1016/0304-4149(94)90065-5
- Philippe Biane, Théorème de Ney-Spitzer sur le dual de $\textrm {SU}(2)$, Trans. Amer. Math. Soc. 345 (1994), no. 1, 179–194 (French, with English summary). MR 1225572, DOI 10.1090/S0002-9947-1994-1225572-0
- Philippe Biane, Intertwining of Markov semi-groups, some examples, Séminaire de Probabilités, XXIX, Lecture Notes in Math., vol. 1613, Springer, Berlin, 1995, pp. 30–36. MR 1459446, DOI 10.1007/BFb0094197
- Philippe Biane, Quantum random walk on the dual of $\textrm {SU}(n)$, Probab. Theory Related Fields 89 (1991), no. 1, 117–129. MR 1109477, DOI 10.1007/BF01225828
- Ph. Bougerol and Th. Jeulin. Paths in Weyl chambers and random matrices. Probab. Theory Related Fields 124 (2002) 517-543.
- Krzysztof Burdzy, A three-dimensional Brownian path reflected on a Brownian path is a free Brownian path, Lett. Math. Phys. 27 (1993), no. 3, 239–241. MR 1217025, DOI 10.1007/BF00739582
- K. Burdzy and D. Nualart. Brownian motion reflected on Brownian motion. Probab. Theory Related Fields, 122 (2002), 471-493.
- Etsur\B{o} Date, Michio Jimbo, and Tetsuji Miwa, Representations of $U_q(\mathfrak {g}\mathfrak {l}(n,\textbf {C}))$ at $q=0$ and the Robinson-Shensted [Schensted] correspondence, Physics and mathematics of strings, World Sci. Publ., Teaneck, NJ, 1990, pp. 185–211. MR 1104259
- J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984. MR 731258, DOI 10.1007/978-1-4612-5208-5
- Y. Doumerc. An asymptotic link between LUE and GUE and its spectral interpretation. Preprint.
- Freeman J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Mathematical Phys. 3 (1962), 1191–1198. MR 148397, DOI 10.1063/1.1703862
- William Fulton, Young tableaux, London Mathematical Society Student Texts, vol. 35, Cambridge University Press, Cambridge, 1997. With applications to representation theory and geometry. MR 1464693
- Peter W. Glynn and Ward Whitt, Departures from many queues in series, Ann. Appl. Probab. 1 (1991), no. 4, 546–572. MR 1129774
- David J. Grabiner, Brownian motion in a Weyl chamber, non-colliding particles, and random matrices, Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), no. 2, 177–204 (English, with English and French summaries). MR 1678525, DOI 10.1016/S0246-0203(99)80010-7
- Janko Gravner, Craig A. Tracy, and Harold Widom, Limit theorems for height fluctuations in a class of discrete space and time growth models, J. Statist. Phys. 102 (2001), no. 5-6, 1085–1132. MR 1830441, DOI 10.1023/A:1004879725949
- Cahit Arf, Untersuchungen über reinverzweigte Erweiterungen diskret bewerteter perfekter Körper, J. Reine Angew. Math. 181 (1939), 1–44 (German). MR 18, DOI 10.1515/crll.1940.181.1
- J. M. Harrison and R. J. Williams, On the quasireversibility of a multiclass Brownian service station, Ann. Probab. 18 (1990), no. 3, 1249–1268. MR 1062068, DOI 10.1214/aop/1176990745
- Alexander R. Its, Craig A. Tracy, and Harold Widom, Random words, Toeplitz determinants, and integrable systems. I, Random matrix models and their applications, Math. Sci. Res. Inst. Publ., vol. 40, Cambridge Univ. Press, Cambridge, 2001, pp. 245–258. MR 1842789
- C. Itzykson and J. B. Zuber, The planar approximation. II, J. Math. Phys. 21 (1980), no. 3, 411–421. MR 562985, DOI 10.1063/1.524438
- Kurt Johansson, Shape fluctuations and random matrices, Comm. Math. Phys. 209 (2000), no. 2, 437–476. MR 1737991, DOI 10.1007/s002200050027
- Kurt Johansson, Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. of Math. (2) 153 (2001), no. 1, 259–296. MR 1826414, DOI 10.2307/2661375
- Wolfgang König, Neil O’Connell and Sebastien Roch. Non-colliding random walks, tandem queues and the discrete ensembles. Elect. J. Probab. 7 (2002) Paper no. 5, 1–24.
- Alain Lascoux, Bernard Leclerc, and Jean-Yves Thibon. The plactic monoid. In: Algebraic Combinatorics on Words, Cambridge University Press, 2002.
- Peter Littelmann, The path model, the quantum Frobenius map and standard monomial theory, Algebraic groups and their representations (Cambridge, 1997) NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci., vol. 517, Kluwer Acad. Publ., Dordrecht, 1998, pp. 175–212. MR 1670770
- I. G. Macdonald, Symmetric functions and Hall polynomials, 2nd ed., Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky; Oxford Science Publications. MR 1354144
- Madan Lal Mehta, Random matrices, 2nd ed., Academic Press, Inc., Boston, MA, 1991. MR 1083764
- Neil O’Connell. Random matrices, non-colliding processes and queues. Lecture Notes in Math., vol. 1801, Springer-Verlag, 2003.
- Neil O’Connell. Conditioned random walks and the RSK correspondence. J. Phys. A 36 (2003) 3049-3066.
- Neil O’Connell and Marc Yor, Brownian analogues of Burke’s theorem, Stochastic Process. Appl. 96 (2001), no. 2, 285–304. MR 1865759, DOI 10.1016/S0304-4149(01)00119-3
- Neil O’Connell and Marc Yor. A representation for non-colliding random walks. Elect. Commun. Probab. 7 (2002) 1-12.
- J. W. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process, Advances in Appl. Probability 7 (1975), no. 3, 511–526. MR 375485, DOI 10.2307/1426125
- L. C. G. Rogers and J. W. Pitman, Markov functions, Ann. Probab. 9 (1981), no. 4, 573–582. MR 624684
- Florin Soucaliuc, Bálint Tóth, and Wendelin Werner, Reflection and coalescence between independent one-dimensional Brownian paths, Ann. Inst. H. Poincaré Probab. Statist. 36 (2000), no. 4, 509–545 (English, with English and French summaries). MR 1785393, DOI 10.1016/S0246-0203(00)00136-9
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
- Craig A. Tracy and Harold Widom, Fredholm determinants, differential equations and matrix models, Comm. Math. Phys. 163 (1994), no. 1, 33–72. MR 1277933, DOI 10.1007/BF02101734
- Craig A. Tracy and Harold Widom, On the distributions of the lengths of the longest monotone subsequences in random words, Probab. Theory Related Fields 119 (2001), no. 3, 350–380. MR 1821139, DOI 10.1007/PL00008763
- David Williams, Diffusions, Markov processes, and martingales. Vol. 1, Probability and Mathematical Statistics, John Wiley & Sons, Ltd., Chichester, 1979. Foundations. MR 531031
- David Williams, Path decomposition and continuity of local time for one-dimensional diffusions. I, Proc. London Math. Soc. (3) 28 (1974), 738–768. MR 350881, DOI 10.1112/plms/s3-28.4.738
Bibliographic Information
- Neil O’Connell
- Affiliation: Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
- Email: noc@maths.warwick.ac.uk
- Received by editor(s): March 7, 2002
- Received by editor(s) in revised form: October 25, 2002
- Published electronically: May 29, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 3669-3697
- MSC (2000): Primary 05E05, 05E10, 15A52, 60B99, 60G50, 60J27, 60J45, 60J65, 60K25, 82C41
- DOI: https://doi.org/10.1090/S0002-9947-03-03226-4
- MathSciNet review: 1990168