The combinatorial rigidity conjecture is false for cubic polynomials
HTML articles powered by AMS MathViewer
- by Christian Henriksen
- Trans. Amer. Math. Soc. 355 (2003), 3625-3639
- DOI: https://doi.org/10.1090/S0002-9947-03-03259-8
- Published electronically: May 29, 2003
- PDF | Request permission
Abstract:
We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995.References
- Bodil Branner and John H. Hubbard, The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), no. 3-4, 143–206. MR 945011, DOI 10.1007/BF02392275
- Lennart Carleson and Theodore W. Gamelin, Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, New York, 1993. MR 1230383, DOI 10.1007/978-1-4612-4364-9
- Adrien Douady, Prolongement de mouvements holomorphes (d’après Słodkowski et autres), Astérisque 227 (1995), Exp. No. 775, 3, 7–20 (French, with French summary). Séminaire Bourbaki, Vol. 1993/94. MR 1321641
- A. Douady and J. H. Hubbard, Étude dynamique des polynômes complexes. Partie I, Publications Mathématiques d’Orsay [Mathematical Publications of Orsay], vol. 84, Université de Paris-Sud, Département de Mathématiques, Orsay, 1984 (French). MR 762431
- Adrien Douady and John Hamal Hubbard, On the dynamics of polynomial-like mappings, Ann. Sci. École Norm. Sup. (4) 18 (1985), no. 2, 287–343. MR 816367, DOI 10.24033/asens.1491
- Adam Epstein and Michael Yampolsky, Geography of the cubic connectedness locus: intertwining surgery, Ann. Sci. École Norm. Sup. (4) 32 (1999), no. 2, 151–185 (English, with English and French summaries). MR 1681808, DOI 10.1016/S0012-9593(99)80013-5
- H. Grauert and K. Fritzsche, Several complex variables, Graduate Texts in Mathematics, Vol. 38, Springer-Verlag, New York-Heidelberg, 1976. Translated from the German. MR 0414912, DOI 10.1007/978-1-4612-9874-8
- P. Haïssinsky, Thèse de doctorat, Université Paris-Sud in Orsay, (1998).
- Ludger Kaup and Burchard Kaup, Holomorphic functions of several variables, De Gruyter Studies in Mathematics, vol. 3, Walter de Gruyter & Co., Berlin, 1983. An introduction to the fundamental theory; With the assistance of Gottfried Barthel; Translated from the German by Michael Bridgland. MR 716497, DOI 10.1515/9783110838350
- Mikhail Lyubich, The quadratic family as a qualitatively solvable model of chaos, Notices Amer. Math. Soc. 47 (2000), no. 9, 1042–1052. MR 1777885
- Mikhail Lyubich, Dynamics of quadratic polynomials. I, II, Acta Math. 178 (1997), no. 2, 185–247, 247–297. MR 1459261, DOI 10.1007/BF02392694
- R. Mañé, P. Sad, and D. Sullivan, On the dynamics of rational maps, Ann. Sci. École Norm. Sup. (4) 16 (1983), no. 2, 193–217. MR 732343, DOI 10.24033/asens.1446
- John Milnor, Dynamics in one complex variable, Friedr. Vieweg & Sohn, Braunschweig, 1999. Introductory lectures. MR 1721240
- John Milnor, Local connectivity of Julia sets: expository lectures, The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser., vol. 274, Cambridge Univ. Press, Cambridge, 2000, pp. 67–116. MR 1765085
- Curtis T. McMullen, The classification of conformal dynamical systems, Current developments in mathematics, 1995 (Cambridge, MA), Int. Press, Cambridge, MA, 1994, pp. 323–360. MR 1474980
- Curtis T. McMullen, Complex dynamics and renormalization, Annals of Mathematics Studies, vol. 135, Princeton University Press, Princeton, NJ, 1994. MR 1312365
- R. Cowen and P. H. Fisher, On expanding endomorphisms of the circle. II, Houston J. Math. 25 (1999), no. 4, 661–666. MR 1829126
- V. A. Naĭshul′, Topological invariants of analytic and area-preserving mappings and their application to analytic differential equations in $\textbf {C}^{2}$ and $\textbf {C}P^{2}$, Trudy Moskov. Mat. Obshch. 44 (1982), 235–245 (Russian). MR 656288
- D. Schleicher, On fibers and local connectivity of Mandelbrot and Multibrot Sets. Manuscript (1998).
- Zbigniew Slodkowski, Extensions of holomorphic motions, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), no. 2, 185–210. MR 1354904
- Dan Erik Krarup Sørensen, Infinitely renormalizable quadratic polynomials, with non-locally connected Julia set, J. Geom. Anal. 10 (2000), no. 1, 169–206. MR 1758587, DOI 10.1007/BF02921810
Bibliographic Information
- Christian Henriksen
- Affiliation: Université Paul Sabatier, Laboratoire Emile Picard, 118, route de Narbonne, 31062 Toulouse Cedex, France
- Address at time of publication: Department of Mathematics, Technical University of Denmark, Matematiktorvet, building 303, DK - 2800 Kgs Lyngby, Denmark
- Email: chris@picard.ups-tlse.fr, christian.henriksen@mat.dtu.dk
- Received by editor(s): January 30, 2002
- Received by editor(s) in revised form: August 13, 2002
- Published electronically: May 29, 2003
- Additional Notes: This research was funded by a Marie Curie Fellowship
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 3625-3639
- MSC (2000): Primary 37F10; Secondary 37F20, 37F45
- DOI: https://doi.org/10.1090/S0002-9947-03-03259-8
- MathSciNet review: 1990165