Heegner zeros of theta functions

Authors:
Jorge Jimenez-Urroz and Tonghai Yang

Journal:
Trans. Amer. Math. Soc. **355** (2003), 4137-4149

MSC (2000):
Primary 11G05, 11M20, 14H52

DOI:
https://doi.org/10.1090/S0002-9947-03-03277-X

Published electronically:
June 18, 2003

MathSciNet review:
1990579

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Heegner divisors play an important role in number theory. However, little is known on whether a modular form has Heegner zeros. In this paper, we start to study this question for a family of classical theta functions, and prove a quantitative result, which roughly says that many of these theta functions have a Heegner zero of discriminant . This leads to some interesting questions on the arithmetic of certain elliptic curves, which we also address here.

**[B]**W. E. H. Berwick,*Modular invariants expressible in terms of quadratic and cubic irrationals*, Math. Ann.**96**(1927), 53-69.**[B-K-O]**J. Bruinier, W. Kohnen, and K. Ono,*The arithmetic of the values of modular functions and the divisors of modular forms*, Compositio Math., accepted for publication.**[C]**J. E. Cremona,*Algorithms for modular elliptic curves*, 2nd edition, Cambridge University Press, 1997. MR**99e:11068****[G1]**B. Gross,*Arithmetic of elliptic curves vith complex multiplication*, Lecture Notes in Mathematics 776, Springer-Verlag, Berlin, 1980. MR**81f:10041****[G2]**-,*Minimal models for elliptic curves with complex multiplication*, Compositio Math.**45**(1982), 155-164. MR**84j:14044****[Go]**F. Gouvêa,*The square-free sieve over number fields*, J. Number Theory**43**(1993), 109-122. MR**93m:11045****[G-M]**F. Gouvêa and B. Mazur,*The square-free sieve and the rank of elliptic curves*, J. Amer. Math. Soc.**4**(1991), 1-23. MR**92b:11039****[H-R]**H. Halberstam and H.-E. Richert,*Sieve methods*, London Mathematical Society Monographs, No. 4, Academic Press, London, 1974. MR**54:12689****[H-W]**G. H. Hardy and E. M. Wright,*An introduction to the theory of numbers*, 5th edition, The Clarendon Press, Oxford Univ. Press, 1979. MR**81i:10002****[J]**J. Jiménez Urroz,*Non-trivial zeroes for quadratic twists of Hasse-Weil**-Functions*, J. Number Theory**77**(1999), 331-335. MR**2000d:11088****[K-L]**V. A. Kolyvagin and D. Yu. Logachev,*Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties*(Russian), Algebra i Analiz**1**(1989), no. 5, 171-196. Translation in Leningrad Math. J.**1**(1990), 1229-1253. MR**91c:11032****[M-R]**H. Montgomery and D. Rohrlich,*On the L-functions of canonical Hecke characters of imaginary quadratic fields*, Duke Math. J.**49**(1982), 937-942. MR**84e:12014****[M-Y]**S. Miller and T. H. Yang,*Non-vanishing of the central derivative of canonical Hecke L-functions*, Math. Res. Letters**7**(2000), 263-277. MR**2001i:11058****[N]**T. Nagel,*Généralisation d'un théorème de Tchebycheff*, J. Math. Pures. Appl. (8)**4**(1921), 343-356.**[R]**D. E. Rohrlich,*A modular version of Jensen's formula*, Math. Proc. Cambridge Philos. Soc.**95**(1984), 15-20. MR**85d:11043****[RV-Y]**F. Rodriguez Villegas and T. H. Yang,*Central values of Hecke**-functions of CM number fields*, Duke Math. J.**98**(1999), 541-564. MR**2000j:11074****[S-T]**C. L. Stewart and J. Top,*On ranks of twists of elliptic curves and power-free values of binary forms*, J. Amer. Math. Soc.**8**(1995), 943-973. MR**95m:11055****[Y]**T. H. Yang,*Nonvanishing of central Hecke**-values and rank of certain elliptic curves*, Compositio Math.**117**(1999), 337-359. MR**2001a:11093**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC (2000):
11G05,
11M20,
14H52

Retrieve articles in all journals with MSC (2000): 11G05, 11M20, 14H52

Additional Information

**Jorge Jimenez-Urroz**

Affiliation:
Departamento de Matemática Aplicada IV, ETSETB, Universidad Politecnica de Catalunya, 08034 Barcelona, España

Email:
jjimenez@mat.upc.es

**Tonghai Yang**

Affiliation:
Department of Mathematics, University of Wisconsin Madison, Madison, Wisconsin 53717

Email:
thyang@math.wisc.edu

DOI:
https://doi.org/10.1090/S0002-9947-03-03277-X

Keywords:
Theta functions,
elliptic curves,
Heegner points

Received by editor(s):
February 25, 2002

Received by editor(s) in revised form:
December 20, 2002

Published electronically:
June 18, 2003

Additional Notes:
The first author was partially supported by PB90-0179 and Ramon y Cajal program of MCYT. The second author was partially supported by NSF grant DMS-0070476

Article copyright:
© Copyright 2003
American Mathematical Society