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MEROMORPHIC GROUPS

ANAND PILLAY AND THOMAS SCANLON

Abstract. We show that a connected group interpretable in a compact com-
plex manifold (a meromorphic group) is definably an extension of a complex
torus by a linear algebraic group, generalizing results of Fujiki. A special case
of this result, as well as one of the ingredients in the proof, is that a strongly
minimal modular meromorphic group is a complex torus, answering a ques-
tion of Hrushovski. As a consequence, we show that a simple compact complex
manifold has algebraic and Kummer dimension zero if and only if its generic
type is trivial.

1. Introduction

Let A be the category of reduced irreducible compact complex spaces. By a
Zariski open subset of some X ∈ A we mean, as usual, the complement of an
analytic subset of X . We understand a meromorphic mapping from X to Y (X,Y ∈
A) in the sense of Remmert. Roughly speaking, it is an analytic subset Z of X×Y
such that for some (nonempty, so dense) Zariski open subset U of X , Z ∩ (U × Y )
is the graph of a holomorphic function from U to Y . A considered as a many-
sorted structure, whose sorts are the compact complex spaces and whose basic
relations are the analytic subsets of various Cartesian products of the sorts, is a
structure with quantifier-elimination and finite Morley rank (sort by sort). This was
proved by Zilber [20] (although quantifier-elimination was also noted earlier in [12]).
Quantifier-elimination says that the definable sets are precisely the finite unions of
locally Zariski closed subsets of various compact complex spaces. It follows that
definable functions are precisely piecewise meromorphic functions. Moreover, there
is a natural complex analytic definition of the class of groups interpretable in a
compact complex manifold.

Fujiki, in his study [4] of automorphism groups of compact Kähler manifolds,
introduces the notion of a “meromorphic group”. As we will be proposing a less
restrictive meaning for “meromorphic group”, we will refer to Fujiki’s notion as
“Fujiki-meromorphic”. A Fujiki-meromorphic group is a complex Lie group G
which is a Zariski open subset of some compact complex space G∗ such that the
group operation of G extends to a meromorphic mapping from G∗ × G∗ to G∗

which is holomorphic on (G × G∗) ∪ (G∗ × G). Let C be the full subcategory of
A consisting of compact complex spaces which are holomorphic images of compact
Kähler manifolds. Fujiki proves that if G is a connected Fujiki-meromorphic group
in C (namely G∗ ∈ C), then G is “meromorphically” isomorphic to an extension of

Received by the editors June 16, 2000.
2000 Mathematics Subject Classification. Primary 30Dxx.
The first author was partially supported by an NSF grant; the second, by an NSF MSPRF.

c©2003 American Mathematical Society

3843



3844 ANAND PILLAY AND THOMAS SCANLON

a complex torus by a linear algebraic group, generalizing Chevalley’s well-known
theorem for algebraic groups. He raises the issue of whether this remains true in
the more general category A, and proves it for G commutative.

While we will show that every group interpretable in a compact complex manifold
is definably isomorphic to a Fujiki-meromorphic group, such groups are naturally
only meromorphic groups in the following less restrictive sense. A meromorphic
group G is a complex Lie group with a finite covering by Zariski open subsets Ui of
irreducible compact complex spaces Xi (i = 1, . . . , n) such that both the transition
maps and the group operation on G extend to meromorphic maps between the var-
ious Xi and their products. Note that if the Xi happen to be algebraic varieties,
then this agrees with the definition of an abstract algebraic group. Complex al-
gebraic groups, complex tori, and Fujiki-meromorphic groups are all meromorphic
groups. Using basic results on the model theory of compact complex manifolds, it
is a routine matter to see that the class of meromorphic groups coincides with the
class of groups interpretable in some compact complex manifold. Our results imply
that meromorphic groups coincide with Fujiki-meromorphic groups, and moreover
have Kähler compactifications.

A strongly minimal set in A is a definable set without infinite, co-infinite de-
finable subsets. A strongly minimal group in A is precisely a meromorphic group
without proper infinite Zariski closed subsets. In [10] it was noted that the deep
results of [11] apply to strongly minimal sets definable in A, implying that any
strongly minimal definable group G either is a (one-dimensional) algebraic group,
or is modular: every definable subset of G×· · ·×G is a finite Boolean combination
of translates of subgroups. Simple complex tori of dimension > 1 are examples of
strongly minimal modular groups (see [14]). For the converse, Hrushovski [8] asked
whether strongly minimal modular groups are (necessarily simple) complex tori. In
fact, Hrushovski outlined to the first author some ideas for proving this, depending
however on finding a good compactification of the group. In any case, the question
was answered by the second author in [18] for the special case when G is itself
interpretable in a strongly minimal compact complex manifold. In [14] additional
observations about A and its model theory were made, including elimination of
imaginaries. Also, it was asked whether the Chevalley theorem holds for groups
definable in A. We found subsequently that the same question was asked in [4] for
Fujiki-meromorphic groups.

We will prove the following results:

Theorem 1.1. Suppose G is a strongly minimal meromorphic group. Then G is
meromorphically isomorphic to either a one-dimensional algebraic group or a simple
nonalgebraic torus.

Theorem 1.2. Suppose G is a connected meromorphic group. Then G has a nor-
mal connected meromorphic subgroup L such that L is (meromorphically isomorphic
to) a linear algebraic group, and G/L is a complex torus. Moreover, L is unique.

Theorem 1.1 is a special case of Theorem 1.2. Theorem 1.1 will be proved by
finding a good compactification of G (i.e. showing that G is Fujiki-meromorphic)
and then (as G is commutative) referring to [4]. By again finding a suitable com-
pactification we will first prove Theorem 1.2 for the special case when G is an
extension of a one-dimensional linear algebraic group by a simple complex torus.
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The general case will follow by an induction on dimension, making use of some ad-
ditional ingredients such as the structure of compact complex spaces with algebraic
codimension one, and some model theory of groups of finite Morley rank.

In the next section we give some definitions and recall both complex analytic and
model-theoretic notions. In section 3 we carry out compactifications, proving The-
orem 1.1 among other things. In section 4 we prove Theorem 1.2. Some additional
remarks are made in section 5.

2. Preliminaries

For basic results, notions and notation concerning complex spaces and meromor-
phic maps, we refer the reader to [3], [6] and [19]. However, we will repeat a few
crucial definitions and results which we will be relying on. For us A denotes the
class of reduced irreducible compact complex spaces. We take as given the notion of
a holomorphic map f from X to Y , where X,Y ∈ A. dim(X) denotes the complex
dimension of X . A modification of X ∈ A is some Y ∈ A and a surjective holomor-
phic f : Y → X such that for some proper closed analytic subsets A of Y and B
of X , f |(Y \A) : Y \A→ X \B is biholomorphic. Resolution of singularities says
that any X has a modification (Y, f) such that Y is nonsingular (so a connected
compact complex manifold). The notion of a meromorphic mapping f from X to
Y (X,Y ∈ A) is crucial. Such an object can be defined in various equivalent ways.
For X irreducible we define f to be a function from X to the set of subsets of Y
such that the “graph” of f , {(x, y) ∈ X × Y : y ∈ f(x)} is an irreducible analytic
subset of X × Y , and for all x in some (dense) Zariski open subset U of X , f(x) is
a singleton. For a general X we say that f is meromorphic if each of its restrictions
to the irreducible components of X is meromorphic. We say that f is holomorphic,
or defined, at the points in U . Let Z be the graph of f as defined above, and π
the projection from Z onto X . Then (Z, π) turns out to be a modification of X .
The projection of Z on the second coordinate is then a holomorphic map from Z
to Y which is said to be a resolution of indeterminacies of the meromorphic map
f . From the definition of a meromorphic map one easily derives the following fact.

Fact 2.1. Let X,Y ∈ A. Let f, g be meromorphic mappings from X to Y . Suppose
that for some dense Zariski open subset U of X, f and g agree on U . Then f = g.

Suppose that U is a dense Zariski open subset of X ∈ A, and f a holomorphic
map from U into Y ∈ A. By abuse of language we may sometimes say that f
is meromorphic if there is a meromorphic mapping g from X to Y which agrees
with f on U . A natural category which can be associated to A is the category
whose objects are those complex spaces which are Zariski open subsets of spaces in
A and whose morphisms are the holomorphic maps which are meromorphic in the
sense of the previous sentence. If we restrict our attention to those X , Y which
are projective algebraic varieties, this category is exactly that of quasiprojective
varieties and morphisms.

It is also natural to consider complex spaces which have a finite covering by
Zariski open subsets Ui of spaces Xi in A where the transition maps are mero-
morphic in the above sense. Morphisms in this category would be holomorphic
maps which are meromorphic (in the above sense) when read in each Ui. From
the model-theoretic point of view this is the category of complex spaces definable
in A with holomorphic definable functions as the morphisms. What we will call a
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meromorphic group is exactly a group object in this latter category. Here is the
precise definition.

Definition 2.2. A meromorphic group is a complex Lie group G, with a finite
covering by open subsets Wi, for i = 1, . . . , n, and for each i a (biholomorphic)
isomorphism φi of Wi with a Zariski open subset Ui of some Xi ∈ A such that

(i) for each i 6= j, φi(Wi ∩Wj) is a Zariski open subset of Xi, and the induced
biholomorphic map between φi(Wi∩Wj) and φj(Wi∩Wj) is meromorphic,
namely is the restriction of a meromorphic mapping between Xi and Xj;
and

(ii) For each i, j, k, the set {(x, y) ∈ Ui × Uj : φ−1
i (x) · φ−1

j (y) ∈ Wk} is
Zariski open in Xi ×Xj and the induced holomorphic map ((x, y) goes to
φk(φ1

i (x) · φ−1
j (y))) from Ui × Uj to Uk is meromorphic, namely is the re-

striction of a meromorphic mapping between Xi ×Xj and Xk.

Conditions (i) and (ii) can be expressed briefly by saying that the transition
maps as well as the group operation are meromorphic when read in the various Ui
and their Cartesian products.

We say that the covering by the Wi’s and the isomorphisms with the Ui’s satis-
fying (i) and (ii) above give the complex Lie group G a meromorphic structure.

If G are a meromorphic group as in Definition 2.2, by a meromorphic subgroupH
of G we mean a closed subgroup such that for each i, φi(H ∩Wi) is the intersection
of an analytic subset of Xi with Ui. Clearly H has the structure of a meromorphic
group.

A holomorphic homomorphism (complex Lie homomorphism) f between mero-
morphic groups G1 and G2 is meromorphic if when restricted to the charts the map
is meromorphic, that is, extends to meromorphic mappings between the relevant
compact complex spaces.

So now we have the category of meromorphic groups and meromorphic homomor-
phisms. The following says that quotient objects exist. It follows from looking at
the equivalent category of definable groups and using the elimination of imaginaries
result from [14]. This will be explained below.

Fact 2.3. Let G be a meromorphic group and N a normal meromorphic subgroup.
Then there are a meromorphic group H and a surjective meromorphic homomor-
phism from G to H whose kernel is N .

We now repeat the definition of a Fujiki-meromorphic group and recall what
Fujiki proved.

Definition 2.4. Let G be a complex Lie group.
(i) A meromorphic compactification of G is a compact complex space G∗ ∈ A

which contains G as a dense Zariski open subset, such that the group oper-
ation µ : G×G→ G is meromorphic, i.e. the restriction of a meromorphic
mapping µ∗, say, from G∗ ×G∗ to G∗

(ii) A Fujiki compactification of G is a meromorphic compactification (G∗, µ∗)
of G such that µ∗ is holomorphic on (G×G∗) ∪ (G∗ ∪G).

(iii) G is Fujiki-meromorphic if G has a Fujiki compactification.

Remark 2.5. (i) A Fujiki-meromorphic group is a meromorphic group.
(ii) A connected compact complex Lie group (i.e. a complex torus) is Fujiki-

meromorphic.
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(iii) (Remark 2.3 of [4].) A complex algebraic group is Fujiki-meromorphic.

Following the notation of Fujiki [4], we set up

Definition 2.6. We will call the meromorphic group G regular if there is a mero-
morphic homomorphism f from G0, the connected component of the identity in G,
onto a complex torus T such that the kernel L of f is meromorphically isomorphic
to a connected linear algebraic group. (Briefly said: G0 is meromorphically an
extension of a complex torus T by a linear algebraic group L.)

Remark 2.7. (i) Let G be regular and let T, L be as above. Then L and T are
unique. In particular, L is the unique maximal normal connected meromorphic
subgroup of G0 which is meromorphically isomorphic to a linear algebraic group.

(ii) A regular meromorphic group is Fujiki-meromorphic.

Proof. (i) Suppose L1 is a normal connected meromorphic subgroup of G which is
meromorphically isomorphic to a linear algebraic group. Then L1/L meromorphi-
cally embeds in T . So L1/L is both a complex torus and a linear algebraic group,
forcing it to be trivial. That is, L1 is contained in L.

(ii) As in Remark 2.3 of [4]. �

Recall that C is the subclass (in fact, the full subcategory) of A consisting of
those X which are holomorphic images of compact connected Kähler manifolds. We
will say that the connected meromorphic group G is of type C if there is a Fujiki
compactification G∗ of G which is in C. Fujiki proves:

Fact 2.8. (i) A Fujiki-meromorphic group G is regular iff G is of type C.
(ii) If G is commutative and Fujiki-meromorphic, then G is regular.

In the final part of this section we discuss the model theory of compact complex
manifolds. We will have to assume the basics of model theory, and a bit more. [7] is a
good reference for basic model theory. The first four chapters of [2] (by Bouscaren,
Ziegler, Lascar, Pillay) are a useful reference for various aspects of applied and
geometric stability theory. [15] is an advanced text on geometric stability. [1] deals
with the theory of groups of finite Morley rank. Another good reference for stable
groups is [17].

We consider A as a many-sorted first order structure whose sorts are the (re-
duced, irreducible) compact complex spaces and whose basic relations are the an-
alytic subsets of finite Cartesian products of such things.

Fact 2.9. Th(A) has quantifier-elimination and elimination of imaginaries, and
each sort has finite Morley rank. Moreover, A is ℵ1-compact.

Quantifier-elimination was proved in [12], and independently in [20]. It says that
any definable subset of a sort X is analytically constructible, that is, a finite union
of intersections of analytic (Zariski closed) subsets and complements of analytic
(Zariski open) sets. A characterization of definable functions follows from this:
Suppose U is a definable set, and f a definable function from X into some sort
Y . Then we can write X as a disjoint union of definable sets Ui, where each Ui
is a Zariski open subset of some sort (complex space) Xi such that for each i, the
restriction of f to Ui is holomorphic and is the restriction to Ui of a meromorphic
mapping fromXi to Y . We say, with possibly some abuse of language, that definable
functions are piecewise meromorphic.
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Zilber [20] proved finiteness of Morley rank. Elimination of imaginaries was
observed in [14].
ℵ1-compactness means that any countable family of definable subsets of some

sort X has nonempty intersection as long a every finite subfamily does.
With Fact 2.9 there is a remarkable parallel between complex-analytic and

model-theoretic structural and classification results. We refer the reader to [20],
[8], [14] for more discussion. Note that on the face of it A is not ℵ1-saturated, as
each element of each sort is essentially named by a constant. One can ask whether
there is some sublanguage L0 of the full language L described above such that every
relation in L is definable, possibly with parameters, in the language L0 and such
that the reduct A|L0 is ℵ1-saturated. This is not true, as, for example, a general
generalized Hopf surface has continuum many holomorphic automorphisms, but
our Proposition 5.2 shows that it has trivial generic type and hence cannot have
an infinite definable family of automorphisms. On the other hand, C can be con-
sidered as a reduct of A (fewer sorts but the full structure on each sort), which
has quantifier-elimination and elimination of imaginaries in its own right. Fujiki’s
results [5] on the Douady spaces of manifolds in C imply that the structure C is
ℵ1-saturated in a suitable sublanguage. (See [13].)
A′ will denote a very saturated elementary extension of A. For any X ∈ A, X ′

denotes its canonical extension in A′. We will often work model-theoretically in A′.
For example, a definable property holds generically on X iff it holds for a generic
point of X ′.

A definable group G in A will be called connected if G has no definable sub-
groups of finite index. Any meromorphic group is clearly a definable group (using
elimination of imaginaries). Methods from the algebraic case due to Hrushovski
and van den Dries (see [17] as well as Pillay’s article in [2]) adapt to yield the
important

Fact 2.10. Any interpretable group G in A is definably isomorphic to a meromor-
phic group H (unique up to meromorphic isomorphism).

This fact gives a natural equivalence between the category of definable groups
and that of meromorphic groups. In particular any definable homomorphism be-
tween meromorphic groups will be meromorphic (and, hence, by homogeneity, holo-
morphic). From here on we will use “definable” interchangeably with “meromor-
phic” when talking about groups and homomorphisms.

A definable set X (in A) is said to be strongly minimal if X is infinite and has
no infinite co-infinite definable subsets. A definable connected group A is said to
be modular if every definable subset of An is a Boolean combination of translates
of definable subgroups. In [10] it was proved that the results of [11] apply to the
category A. This yields

Fact 2.11. Suppose G is a definable connected group in A which has no infinite
normal definable subgroups. Then either G is strongly minimal and modular, or G
is definably isomorphic to a (complex ) algebraic group.

It follows that if T is a nonalgebraic simple complex torus, then T is modular.
(A direct proof, avoiding [11], was given in [14].)
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3. Compactifications

We will prove

Theorem 3.1. Let G be a connected commutative meromorphic group which is
either strongly minimal, or an extension of a connected one-dimensional linear
algebraic group by a simple complex torus. Then G is Fujiki-meromorphic.

A consequence is:

Corollary 3.2. (i) Let G be a strongly minimal meromorphic group. Then G is
meromorphically isomorphic to either a one-dimensional algebraic group or a simple
modular complex torus.

(ii) Let G be a commutative meromorphic group which is an extension of a one-
dimensional linear algebraic group by a simple complex torus. Then G meromor-
phically splits.

Proof. (i) G is commutative, so by Theorem 3.1, Fujiki meromorphic, and thus,
by Fact 2.8 (ii), meromorphically an extension of a complex torus T by a linear
algebraic group L. As G is strongly minimal, G is either T or L. If G = L, then
dim(L) = 1. If G = T , then T has no proper infinite analytic subsets, so T is either
an elliptic curve or simple and modular (by 2.11).

(ii) Immediate, by Fact 2.8 (ii). �

To prove Theorem 3.1, we will find a meromorphic compactification G∗ of G and
then show it to be a Fujiki compactification. The following general result concerning
compactifications of commutative meromorphic groups will be useful.

Lemma 3.3. Suppose that the connected commutative meromorphic group (G,µ)
has meromorphic compactification (G∗, µ∗). Suppose S = G∗ \ G is nonempty.
Then:

(i) Every component of S has codimension 1 in G∗.
(ii) µ∗|(G∗ × S) is a meromorphic mapping from G∗ × S to S.
(iii) For each g ∈ G and each component C of S, µ∗g = µ∗(g,−) : C → C is

biholomorphic on a dense Zariski open subset of C, and for g, h ∈ G we
have µ∗g.µ

∗
h = µ∗g.h on a dense Zariski open subset of C.

Proof. (i) Let n = dim(G∗) (=dim(G)). Suppose for the sake of contradiction that
there is x ∈ S such that dimx(S) < n− 1. Let ∆n be the open unit disc in Cn and
let f : ∆n → U be a coordinate function for any open neighborhood U of x in G∗,
where U is chosen such that U ∩ S has dimension < n− 1. So if A = f−1(U ∩ S),
then A is an analytic subset of ∆n of codimension at least 2, and f1 = f |(∆n \A)
is a holomorphic embedding into G. As G is a connected commutative Lie group,
its universal cover is π : Cn → G. As A has codimension at least two in ∆n, ∆n \A
is simply connected, and so f1 lifts to a holomorphic map f2 : ∆n → Cn (see [3],
Section 2.23). Let g = π ◦ f2. Then g is a holomorphic map from ∆ into G∗ which
agrees with f off the thin analytic subset A. But then, as f and g are holomorphic
functions which agree generically, we have f = g, contradicting the fact that x /∈ G.
(i) is proved.

(ii) Let Γ be the graph of µ∗. We will first show that for all (g, x) in some dense
Zariski open subset V of G∗ × S, {y : (g, x, y) ∈ Γ} is finite. If not, then for a
Zariski open subset V of G∗ × S, the above set of y’s has positive dimension. It
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follows from (i) that dim(Γ ∩ (G∗ × S × G∗)) ≥ 2n, contradicting irreducibility of
Γ. It now follows by the implicit function theorem that

(a) µ∗ is holomorphic on V .
For g ∈ G let µ∗g be µ∗(g,−), a meromorphic mapping from G∗ to G∗. Note that

if µ∗g is defined (single valued) at x and µ∗h is defined at µ∗g(x), then µ∗hg is defined
at x and equals µ∗h(µ∗g(x)). It follows that if (g, x) ∈ V and g ∈ G, then µ(g, x) ∈ S.
As G is Zariski dense in G∗ it follows that

(b) µ∗|(G∗ × S) is a meromorphic mapping into S, yielding (ii).
(iii) The same argument as above shows that for any g ∈ G, µ∗g|S is a meromor-

phic mapping from S to S. Let C1, . . . , Cs be the irreducible components of S. Note
that the image of the meromorphic mapping µ∗g from G∗ to G∗ (i.e. the projection
of its graph on the second component) is all of G∗. But for x ∈ G, µ∗g(x) ∈ G.
Thus the image of the meromorphic mapping µ∗g|S is all of S. We work model-
theoretically. Fix Ci. Let x be a generic point of C′i over A. So y = µ∗g(x) ∈ C′j for
some j = f(i). It follows that µ∗g|Ci is a meromorphic mapping from Ci into Cf(i).

(c) Thus f = fg must be a permutation of {1, . . . , s}.
If for some i, and x as above, µ∗g(x) is not a generic point of C′f(i) over A, then

there is a proper analytic subset Df(i) of Cf(i) such that µ∗g|Ci has image contained
in Df(i). By (c), we contradict the fact that µ∗g|S has image all of S.

Thus for x ∈ C′i generic, µ∗g(x) is generic in C′f(i) over A. It follows that g → fg
gives a definable action of G on {1, . . . , s}. As G is connected, this has to be trivial.
This gives (iii). �

Remark 3.4. (iii) above is interpreted model-theoretically by saying that G acts
generically on C: let p = pC be the generic type of the component C of S. Then
for g ∈ G′ and x realizing p independent of g (over A), µ∗(g, x) is defined, realizes
p and is independent from g. Moreover, if g, h ∈ G′ and x realizes p independent
of g, h, then µ∗(hg, x) = µ∗(h, µ∗(g, x)).

We can now obtain the strongly minimal case of Theorem 3.1.

Lemma 3.5. Let G be a strongly minimal meromorphic group. Then G is Fujiki-
meromorphic.

Proof. Step 1. Finding a meromorphic compactification.
By assumption, on G some open nonempty definable subset U of G is already

a Zariski open subset of a compact complex space X , which we may assume by
resolution of singularities to be a manifold. Moreover, by strong minimality of G,
G\U is finite, say {g1, . . . , gn}. For i = 1, . . . , n let Vi be a coordinate neighborhood
of gi in G such that the closures V̄i of the Vi in G are disjoint. Note that Ki =
V̄i \ {gi} is contained in U , so in X , but is not compact, so not closed in X . Let
Di be the boundary of Ki in X , namely K̄i \Ki. Let π : X → X ′ be the quotient
map which collapses each Di to a point ci. Then X ′ is compact, π is holomorphic
(in fact is a modification), and is biholomorphic outside the union of the Di’s. Let
f : G → X ′ be defined by f(x) = π(x) for x ∈ U and f(gi) = ci. Then f is a
definable, holomorphic embedding.

Step 2. G∗ is a Fujiki compactification of G.
If G = G∗, there is nothing to do. Otherwise, (as G is commutative) Lemma

3.3 applies. Let S be as there. We will show that G is holomorphic on S, and
in fact acts as the identity. Note that the generic type of G is orthogonal to any
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set of dimension less than that of G (G being strongly minimal). In particular, G
is orthogonal to S. Fix a component C of S. Lemma 3.3 (iii) gives us a generic
action of G on C. Let g, h ∈ G′ be generic independent elements of G and let x
be generic in C′ over {g, h}. Then by the orthogonality mentioned above, each
of g and h is independent from {x, µ∗(g, x)}. It follows that µ∗(g, x) = µ∗(h, x),
and thus µ∗(h−1.g, x) = x. But h−1.g is generic in G′ and independent from x.
It follows that G acts generically trivially on C. So the holomorphic map from
G∗ × C to C taking (g, x) to x agrees generically with the meromorphic mapping
µ∗|(G∗ × C) : G∗ × C → C. By Fact 2.1, these mappings agree. This shows that
(G∗, µ∗) is a Fujiki compactification of G. �

We now deal with the case when G is a commutative extension of the additive
group Ga or the multiplicative group Gm by a simple complex torus T . We let H
denote G/T (so H is Ga or Gm). If G is meromorphically isomorphic to an algebraic
group, then G is clearly Fujiki-meromorphic (in fact the Chevalley theorem applies
immediately, yielding Theorem 1.2). If T has a definable complement in G (up to
finite), then again we get the required conclusion. So for the rest of this section we
make:
Assumption.

(a) G is a commutative meromorphic group which is meromorphically an ex-
tension of H by a simple complex torus T , where H is Ga or Gm.

(b) G is not meromorphically isomorphic to an algebraic group.
(c) There is no definable connected infinite subgroup L of G with L∩ T finite.

We will show that G is Fujiki-meromorphic (which actually leads to a contradic-
tion).

We will make use of the socle theory from [9].

Lemma 3.6. T is the maximal almost pluriminimal definable subgroup of G.

Proof. Note that T , being simple, is almost strongly minimal. So if the lemma
fails, as G/T has dimension 1, G is semipluriminimal. By [9], G is an almost direct
product of pairwise orthogonal semiminimal groups. If G is already semiminimal,
then as G is nonorthogonal to P1 via G → H , G must be algebraic, contradicting
Assumption (b) Thus G is the semidirect product of T and some L, contradicting
Assumption (c). �

Lemma 3.7. Let X be a definable subset of G. Assume that the Morley rank of X
is strictly less than the Morley rank of G (equivalently, X is not Zariski dense in
G). Then X is contained in finitely many translates of T .

Proof. We prove the lemma by induction on RM(X) = m. It is clearly true for
m = 0. We may assume that the Morley degree of X is 1. Let S be the (model-
theoretic) stabilizer of X . If S is finite, then by Lemma 3.6, as well as Proposition
4.3 of [9], X is, up to a set of Morley rank < m, contained in a single translate of
T . By the induction hypothesis, X is contained in finitely many translates of T ,
as desired. So we may assume that S is infinite. By Assumption (c), and the fact
that T is simple, S must contain T . Note that RM(T ) = RM(G) − 1 ≥ RM(X).
But it is well-known that the Morley rank of the stabilizer of a Morley degree 1
set X is at most the Morley rank of X , with equality if and only if the stabilizer is
connected and X is, up to a set of smaller Morley rank, a translate of this stabilizer.
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Thus RM(S) = RM(X), S = T , and, up to a set of smaller Morley rank, X is a
translate of T , so we finish again by induction. �
Lemma 3.8. G is Fujiki-meromorphic.

Proof. As in the strongly minimal case we first find a compact complex manifold
G∗ containing G as a Zariski open set, and then show that this gives G a Fujiki-
meromorphic structure.

Step I. Finding the compactification.
Let RM(G) = n. By definition of G being a meromorphic group, let U be a

definable subset (with Morley rank n) of G which is a dense Zariski-open subset
of a compact complex manifold Ū . Let π : G → H be the canonical surjective
homomorphism. Then π takes U onto a cofinite subset π(U) of H .

Claim 1. We may assume that for any x ∈ π(U), π−1(x)∩U = π−1(x) (a translate
of T ).

Proof. Y = π−1(π(U))\U is a definable subset of G of Morley rank < n = RM(G).
By Lemma 3.7, Y is contained in finitely many translates of T , namely finitely many
fibers of π. Remove these fibers from U . �

Let π′ denote π|U . π′ extends to a meromorphic function π̄ from Ū to P1.
Further restricting U , we may assume:

Claim 2. For all x ∈ π′(U), (π′)−1(x) = π̄−1(x).

Let C be the finite set H \ π(U). Then we can find h ∈ π(U) such that h.C ⊂
π(U). Let g ∈ U be a preimage of h. Let τg : G→ G be multiplication by g. τg|U
is not defined everywhere, but is holomorphic on the open set where it is defined,
and so extends to a meromorphic map τ̄g : Ū → Ū . By a theorem of Remmert
(see Theorem 1.9 in Chapter VII of [6]), there are a modification ν : Ũ → Ū and
a holomorphic map τ̃ : Ũ → Ū such that τ̃ = τ̄g · ν. In particular, for x ∈ Ũ such
that τg|U is defined at ν(x), we have τ̃ (x) = τg(ν(x)).

Claim 3. π̄ · τ̃ = τh · π̄ · ν.

Proof. This holds generically, so holds everywhere. �
We will now construct the required compactification G∗ of G as a holomorphic

image of Ũ . Let S = P1\H . So S = {∞} or {∞, 0}. As a set, G∗ will be the disjoint
union of G with π̄−1(S). The manifold structure of G∗ is as follows: G is given its
canonical manifold structure. Now let x ∈ π̄−1(S). Let y = π̄(x) ∈ P1. Choose an
open neighborhood V of y in P1 such that V \ {y} ⊂ U . Then π̄−1(V ) ⊂ G∗ is an
open neighborhood of x. The transition maps are clearly holomorphic, yielding a
structure of a complex compact manifold on G∗ containing G as an open (dense)
subset.

Now we define a holomorphic surjective map f from Ũ to G∗. Let x ∈ Ũ . If
π̄(τ̃ (x)) /∈ C, define f(x) = τ̃ (x) (so f(x) ∈ π̄−1(π(U) ∪ S) ⊂ G∗). On the other
hand, if π̄(τ̃ (x)) ∈ C, define f(x) = g.ν(x). Note that in this latter case we have
ν(x) ∈ U ⊂ G, and so g.ν(x) ∈ G and π(g.ν(x)) = π̄τ̃ (x).

It is easy to check, given our assumptions, that f is holomorphic and surjective.
So G∗ is a compact complex manifold, containing G as a dense Zariski open subset
(the embedding of G in G∗ is definable and holomorphic).

This completes Step I.
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Step II: The regular action of G on itself extends to a trivial action on the
boundary G∗ \G.

Let C1, . . . , Ck be the irreducible components of G∗ \ G. Note that for each i,
dim(Ci) = dim(T ).

Claim 4. For each i there is a surjective holomorphic map from Ci to T (so finite-
to-one outside a proper Zariski closed subset Di of Ci).

Proof. By Step I we have a surjective holomorphic map π : G∗ → P1 such that
π−1(H) = G and π|G is precisely the canonical surjective homomorphism from G
toH . SoG∗\G is π−1(S), where S = P1\H . Consider the map µ(g, h) = g·h−1 from
G×H G to T . This is definable and holomorphic, so it extends to a meromorphic
map from G∗ ×P1 G∗ to T , which we also call µ. By Lemma 3.3 of [4] this map
is holomorphic. In particular, for any Ci and x ∈ Ci, µ(−, x)|Ci is a holomorphic
map from Ci into T . We must show that for suitable x ∈ Ci, this is surjective.

For g ∈ G, let fg be the meromorphic map from G∗ to G∗ whose restriction to
G is multiplication by g (so fg is τ̄g in our previous notation).

Let t ∈ T . The map taking x ∈ G to µ(t·x, x) ∈ T is the constant map with value
t. It follows that whenever x ∈ G∗ and ft is single valued at x, then µ(ft(x), x) = t.
Choose x0 generic in Ci. Then for a dense open set V of t’s in T , ft(x0) is defined
and in Ci. So for each t ∈ V , µ(ft(x0), x0) = t. Thus µ(−, x0)|Ci : Ci → T is
generically surjective, so surjective. In any case this map is finite. �

By Lemma 3.3, for each i, fg induces a generic holomorphic action of G on Ci.
Let Ki be the subgroup of G consisting of those g ∈ G such that for all x in some
Zariski open subset of Ci, fg(x) = x. For dimension reasonsKi is a definable infinite
subgroup of G, so contains T . Moreover we have an induced generic action of G/Ki

on Ci. Let Di be as in Claim 4. Let x0 ∈ Ci be such that for any h in some dense
Zariski open subset of G/Ki, h.x0 ∈ Ci \Di. This gives a meromorphic map from
G/Ki to Ci whose image contains infinitely many points outside Di. Composing
with the holomorphic map from Ci to T given by Claim 4 yields a meromorphic
nonconstant map from P1 into T , which is impossible.

Thus Ki = G, and the generic action of G on Ci is trivial. This holds for each
i. So the generic action of G on G∗ \ G is trivial. That is, if g ∈ G, then the
meromorphic mapping fg : G∗ → (G∗ \G) agrees with the identity map on a dense
Zariski open set. This implies that fg is the identity map. So G∗ witnesses G being
Fujiki meromorphic. The proof of Lemma 3.8 is complete, as well as the proofs of
Theorem 3.1 and Corollary 3.2 �

4. Composition series

In this section we will prove

Theorem 4.1. Suppose G is a connected meromorphic group. Then G is regular
(in the sense of Definition 2.6 ).

We first state a consequence of Theorem 3.1:

Proposition 4.2. Suppose the connected meromorphic group G is simple, in the
sense that G has no nontrivial, connected normal definable subgroup. Then G is
either

(i) an (almost simple) noncommutative algebraic group,
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(ii) Ga or Gm,
(iii) a simple abelian variety, or
(iv) a strongly minimal modular complex torus.

Proof. Simplicity of G, together with the the dichotomy theorem from [11], implies
that either G is nonorthogonal to P1 (namely has nontrivial algebraic reduction) or
G is modular. In the first case, G is an algebraic group, so (i), (ii) or (iii) holds. In
the second case, every definable subset of G is a Boolean combination of cosets of
definable subgroups. Simplicity implies that G is strongly minimal. By 3.2, G is a
complex torus. �

The following will be crucial. The special case for Fujiki-meromorphic groups in
the class C was proved in [4]. In any case the classical theory of groups of finite
Morley rank enters the picture.

Lemma 4.3. Let 1 → L → G → H → 1 be an exact sequence of connected
meromorphic groups and suppose that L and H are (meromorphically isomorphic
to) linear algebraic groups. Then so is G.

Proof. Note that if G satisfies the hypotheses of the lemma and G1 is a connected
definable subgroup of G, or an image of G under a meromorphic homomorphism,
then G1 satisfies the hypotheses too (for suitable L1, H1).

We will prove the lemma by induction on dim(G) = n. We consider various
possibilities for G,

Case I. G has an an infinite center.
By the hypotheses, Z(G) contains an infinite definable linear algebraic group

and thus, by the structure of commutative linear algebraic groups, Z(G) contains
a definable 1-dimensional connected linear algebraic group A. A is normal in G,
so by the induction hypothesis G/A is (meromorphically isomorphic to) a linear
algebraic group. It makes sense to talk about the algebraic dimension a(G) of G.
Note that dim(G/A) = n−1, so the map G→ G/A witnesses that a(G) ≥ n−1. If
a(G) = n, then G is already isomorphic to an algebraic group, so a linear algebraic
group. Otherwise a(G) = n − 1, and it is well-known (see [19]) that the general
fiber of the algebraic reduction π : G → X is an elliptic curve E. But the map
G → G/A must meromorphically factor through π. The general fiber of the first
map is P1, and thus we see that E is an image of P1 under a meromorphic (i.e.
rational) map, a contradiction. Thus G is linear algebraic.

Case II. G is solvable.
We may assume, by Case I, that Z(G) is finite. But then G/Z(G) is centerless,

and easilyG is linear algebraic iff G/Z(G) is. So we may assume thatG is centerless.
As is shown in Chapter 3 of [17] or Chapter 9 of [1], the commutator subgroup G′ of
G is connected, and nilpotent, so Z(G′) is infinite and contains a minimal definable
connected G-normal subgroup A. G/G′ defines an infinite group of automorphisms
of A. Again by results in [17] or [1], A is the additive group of a definable field K.
As A is by hypothesis linear algebraic, the field K has to be (definably isomorphic
to) C and dim(A) = 1. G/A is by the induction hypothesis algebraic, and as in
Case 1 we deduce that G is (definably) algebraic.

Case III. G is nonsolvable.
Note that G is among other things a connected complex Lie group, and as such

we have the Levi-Malcev decomposition G = R.S, where R is the maximal normal
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solvable connected subgroup of G, S is a semisimple (complex) Lie group (unique
up to conjugacy in G), and R∩S is discrete. Finite Morley rank considerations (see
5.38 in [1]) show that R is definable, so linear algebraic by Case II (or induction).
It is probably then well-known that G must be isomorphic as a complex Lie group
to a linear algebraic group. However, we want G to be definably isomorphic to such
a group. So we must do a little more work, although maybe there is a more direct
way. We will show

Claim. S is a definable subgroup of G.

Proof. We may assume that R is a proper, nontrivial subgroup of G, definably
isomorphic to a linear algebraic group. We will first reduce to the case where R
is commutative and unipotent. Let H be the connected component of the center
of the commutator subgroup of R. H is then a nontrivial commutative connected
linear algebraic group, normal in G. So H is the direct product U.T of a commu-
tative unipotent group U and an algebraic torus T . Note that both U and T are
definable connected normal subgroups of G. T has no infinite definable group of
automorphisms, so is central in G. By Case I we may assume T to be trivial. Thus
H = U is unipotent. By the induction hypothesis, G/H is linear algebraic. Clearly
R/H is the solvable radical of G/H . Thus G/H is an almost direct product of
R/H with a semisimple algebraic group G1/H (where G1 is a definable connected
subgroup of G containing H). As S is unique up to conjugacy, we may assume that
G1 = H.S. Note that the homomorphism µ : G1 → G1/H is an isomorphism on S.

Note that G1/H is linear algebraic, by the induction hypothesis among other
things. Now S (being semisimple) is isomorphic (uniquely) as a complex Lie group
to a linear algebraic group, so it makes sense to talk about an element of S being
unipotent. S is an almost direct product of almost simple groups S1, . . . , Sr. Fix a
nontrivial unipotent element a in some Si \H . Work now inside the definable group
G1. Let a1 = µ(a) ∈ G1/H . a1 is then unipotent, and let U1 be a 1-dimensional
definable unipotent subgroup of G1/H containing a1. Let U2 = µ−1(U1). Then
U2 is an extension of a unipotent linear algebraic group (U1) by a linear algebraic
unipotent group H , so it is (by induction) linear algebraic unipotent. a ∈ U2. We
can find a definable commutative connected subgroup U3 of U2 containing a. U3

is definably a vector space over C. The 1-dimensional subspace U4 generated by a
is a definable subgroup of G contained in Si. We have found an infinite connected
subgroup U4 of Si which is definable in G. The group generated by all the Ug4 ,
where g ∈ Si, is definable and must be equal to Si. So Si is definable. As i was
arbitrary, S is definable. The claim is proved. �

We want S to be definably isomorphic to a linear algebraic group. Recall that
S as a complex Lie group is the almost direct product of almost simple (discrete
center) groups S1, . . . , Sr. As the center of S is definable, each Si has finite center.
By considering centralizers, each Si is definable. Also, Si, being almost simple,
is almost strongly minimal, hence, by the validity of the Zilber trichotomy in A,
modular or nonorthogonal to P1. But Si is nonabelian. So it must be nonorthogonal
to P1, so algebraic. Thus S is definably an algebraic group, so by semismplicity,
linear algebraic.

Finally G, being the almost semidirect product of linear algebraic R with linear
algebraic S, must be linear algebraic. Case III is complete, as well as the proof of
Lemma 4.3. �
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Proof of Theorem 4.1. The proof will by induction on dim(G).
We first deal with the case when G is commutative. Let H be a minimal definable

connected subgroup of G. By 4.2, H is either (a) a linear algebraic group or (b)
a simple complex torus. If G = H , we are finished. Otherwise, applying the
induction hypotheses, G/H is definably an extension of a complex torus T , by a
linear algebraic group L/H . In case (a), by Lemma 4.3, L is linear algebraic. So
G is definably an extension of T by L, and we finish. So suppose (b) holds. If
L/H is trivial, G is an extension of a complex torus by a complex torus, so also a
complex torus. Otherwise let L1/H be a 1-dimensional subgroup of L/H . Then L
is definably an extension of Ga or Gm by the simple complex torus T . By Corollary
3.2 (ii) L splits, yielding a 1-dimensional linear algebraic subgroup of G. We are
now back in case (a). This proves Case I.

We now deal with the general case.
If G has no proper normal nontrivial definable connected subgroup, then we are

finished by 4.2
Otherwise let H be a proper normal nontrivial connected subgroup of G. The

induction hypothesis applies toH . If the maximal connected linear algebraic normal
subgroup L of H is nontrivial, then L is normal in G, as L is characteristic in H
by Remark 2.7(i), and by applying the induction hypothesis to G/L and applying
Lemma 4.3 we finish. Otherwise H is a complex torus. As a complex torus has
no infinite definable group of automorphisms, H is central in G. The induction
hypothesis applies to G/H . If the latter is a complex torus, so isG. OtherwiseG has
a connected normal definable subgroup G1 containing H such that G1/H is linear
algebraic. If G1/H is semisimple (equivalently, contains no infinite normal solvable
subgroup), then G1 is the almost direct product of its commutator subgroup G′1
and H . G′1 is semisimple, so (definably) linear algebraic. We conclude by applying
the induction hypothesis to G/G′1 and using Lemma 4.3.

If G1/H is not semisimple, then there is a definable nontrivial connected sub-
group A of G1 containing H such that A is normal in G and A/H is commutative
(and linear algebraic). A/H is (definably) a product of Ga’s and Gm’s. Remem-
ber that H is central in A, so if A is not commutative, then the commutator map
yields a nonconstant meromorphic map from A/H × A/H into the complex torus
H , which is impossible. So A has to be commutative. By the induction hypothesis,
or by the first part of the proof (if A = G), A has a definable connected (nontrivial)
subgroup which is normal in G and (definably) linear algebraic. By the induction
hypothesis and Lemma 4.3, we finish.

This completes the proof of Theorem 4.1. �

5. Additional remarks and questions

We call a compact complex manifold (or space) X simple if there is no definable
family {Yt : t ∈ T } of positive-dimensional proper analytic subvarieties of X such
that

⋃
{Yt : t ∈ T } contains a Zariski open subset of X . It is easy to see that

X is simple if and only if its generic type pX has U -rank 1, that is, is a minimal
type. Recall that a minimal type p(x) is trivial if any set of pairwise independent
realizations of p is an independent set. A simple compact complex manifold X has
a trivial generic type if and only if every analytic subvariety of any Cartesian power
Xn of X is an intersection of subvarieties of the form π−1(Y ), where Y ⊆ X2 is an
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analytic subvariety of the Cartesian square of X and π : Xn → X2 is a projection
of the form (x1, . . . , xn) 7→ (xi, xj) for some i ≤ j.

The following was first proved by the second author [18]. We give a quick proof
using Theorem 1.1.

Proposition 5.1. Let X be a strongly minimal compact complex manifold. Then
X is either a (smooth projective) algebraic curve, a complex torus, or has trivial
generic type.

Proof. Suppose that X is neither trivial, nor an algebraic curve. Then dim(X) > 1,
and by [10] and [11], there is a strongly minimal group G definable in X . By Theo-
rem 1.1 G must be a simple complex torus, nonorthogonal to X . Nonorthogonality
is witnessed by an analytic subset Γ of X ×A which projects generically finite-to-
one on each of X and G. As both X,G are strongly minimal, both projections
π1 : Γ → X and π2 : Γ → G are finite-to-one, and Γ is strongly minimal with
dim(Γ) = dim(X) = dim(G) > 1. Replacing Γ by its normalization, we may assume
Γ is normal. Γ has no proper infinite analytic subsets, in particular no codimension
1 analytic subsets. By the purity-of-branch theorem, π2 is an unramified covering.
As a finite unramified covering of a simple complex torus is necessarily a simple
complex torus (since a subgroup of finite index in a lattice is also a lattice), Γ is a
complex torus. Via an easy calculation involving automorphisms of complex tori,
one sees that the only finite groups of automorphisms which act freely on simple
complex tori are given by translations by finite subgroups. Thus, if T is a simple
complex torus and T → Z is a finite unramified covering, then Z is also a complex
torus. As π1 is also an unramified covering, X is a complex torus. �

We can more generally give natural necessary and sufficient conditions for a
type of U -rank 1 to be trivial. A Kummer manifold is a compact complex space
which is bimeromorphic with a space of the form T/G, where T is a complex
torus and G a finite group of (holomorphic) automorphisms of T . Recall that the
Kummer dimension of a compact complex manifold X is the maximal dimension
of a Kummer manifold Y for which there is a dominant meromorphic map from X
to Y (if such exists), and zero otherwise.

The following proposition explains the trichotomy within simple compact com-
plex spaces between algebraic curves, nonalgebraic Kummer manifolds, and man-
ifolds of zero algebraic and Kummer dimension in terms of the Zilber trichotomy
for Zariski geometries.

Proposition 5.2. Suppose X is a simple compact complex manifold. Then pX is
trivial if and only if

(i) the algebraic dimension a(X) of X is 0, and
(ii) there is no surjective meromorphic map from X to a nontrivial Kummer

manifold (i.e., k(X) = 0, in the notation of [5]).
In particular, if X /∈ C, then pX is trivial.

Proof. (⇐): Suppose pX is nonorthogonal to P1. Then clearly a(X) > 0. Suppose
pX is nontrivial and modular. Then pX is nonorthogonal to the generic type of a
strongly minimal modular torus T . Let a be a generic point of X ′ (i.e. a realization
of pX). Then there is a generic b ∈ T ′ in acl(a). Let {b1, . . . , bn} be the finite set
of realizations of tp(b/a). Then by the modularity of T , (b1, . . . , bn) is a generic
point of a translate of a (strongly minimal) subtorus S of T n. After translating we
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may assume that (b1, . . . , bn) is a generic point of S. By elimination of imaginaries
the finite set {b1, . . . , bn} is coded by some c. As c ∈ dcl(a), we obtain a surjective
meromorphic map f from X to a compact complex manifold Y , where c is a generic
point of Y . But the map taking (b1, · · · , bn) to c extends to a meromorphic map
from S to Y . Modularity of S implies that this induces a bimeromorphic map
between S/G and Y for some finite group G of automorphisms of S. Thus Y is
Kummer. So if (i) and (ii) hold, the only possibility left for pX is to be trivial.

(⇒): If (i) fails, then pX is nonorthogonal to P1, so is nontrivial. If (ii) fails and
there is a surjective meromorphic map to the Kummer manifold Y , then clearly Y
is also simple and its generic type is nontrivial. So pX is nontrivial.

The “in particular” clause follows from the observations that any Kummer mani-
fold Y is in C as well as any compact complex manifold which maps meromorphically
and generically finite-to-one on Y . �

Our classification of meromorphic groups together with Fact 2.8 (i) shows that
any meromorphic group G is of type C, that is, already definable in the structure C.
As C is saturated in a suitable language, our results also classify definable groups
in all models of Th(C). What about groups definable in elementary extensions of
A? Here is a conjecture:

Conjecture 5.3. Let G be a definable group in A′. Then G is definably (in A′)
isomorphic to a group H definable in the reduct C′.

The conjecture can be restated in terms of families of groups in A.

Note added in proof

An example refuting Conjecture 5.3 is presented in [16].
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