Meromorphic groups
HTML articles powered by AMS MathViewer
- by Anand Pillay and Thomas Scanlon
- Trans. Amer. Math. Soc. 355 (2003), 3843-3859
- DOI: https://doi.org/10.1090/S0002-9947-03-03383-X
- Published electronically: June 24, 2003
- PDF | Request permission
Abstract:
We show that a connected group interpretable in a compact complex manifold (a meromorphic group) is definably an extension of a complex torus by a linear algebraic group, generalizing results of Fujiki. A special case of this result, as well as one of the ingredients in the proof, is that a strongly minimal modular meromorphic group is a complex torus, answering a question of Hrushovski. As a consequence, we show that a simple compact complex manifold has algebraic and Kummer dimension zero if and only if its generic type is trivial.References
- Alexandre Borovik and Ali Nesin, Groups of finite Morley rank, Oxford Logic Guides, vol. 26, The Clarendon Press, Oxford University Press, New York, 1994. Oxford Science Publications. MR 1321141
- Elisabeth Bouscaren (ed.), Model theory and algebraic geometry, Lecture Notes in Mathematics, vol. 1696, Springer-Verlag, Berlin, 1998. An introduction to E. Hrushovski’s proof of the geometric Mordell-Lang conjecture. MR 1678586, DOI 10.1007/978-3-540-68521-0
- Gerd Fischer, Complex analytic geometry, Lecture Notes in Mathematics, Vol. 538, Springer-Verlag, Berlin-New York, 1976. MR 0430286
- Akira Fujiki, On automorphism groups of compact Kähler manifolds, Invent. Math. 44 (1978), no. 3, 225–258. MR 481142, DOI 10.1007/BF01403162
- Kenji Ueno, Introduction to the theory of compact complex spaces in the class ${\cal C}$, Algebraic varieties and analytic varieties (Tokyo, 1981) Adv. Stud. Pure Math., vol. 1, North-Holland, Amsterdam, 1983, pp. 219–230. MR 715652, DOI 10.2969/aspm/00110219
- H. Grauert, Th. Peternell, and R. Remmert (eds.), Several complex variables. VII, Encyclopaedia of Mathematical Sciences, vol. 74, Springer-Verlag, Berlin, 1994. Sheaf-theoretical methods in complex analysis; A reprint of Current problems in mathematics. Fundamental directions. Vol. 74 (Russian), Vseross. Inst. Nauchn. i Tekhn. Inform. (VINITI), Moscow. MR 1326617, DOI 10.1007/978-3-662-09873-8
- Wilfrid Hodges, Model theory, Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge University Press, Cambridge, 1993. MR 1221741, DOI 10.1017/CBO9780511551574
- Ehud Hrushovski, Geometric model theory, Proceedings of the International Congress of Mathematicians, Vol. I (Berlin, 1998), 1998, pp. 281–302. MR 1648035
- Ehud Hrushovski, The Mordell-Lang conjecture for function fields, J. Amer. Math. Soc. 9 (1996), no. 3, 667–690. MR 1333294, DOI 10.1090/S0894-0347-96-00202-0
- Ehud Hrushovski and Boris Zilber, Zariski geometries, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 315–323. MR 1183999, DOI 10.1090/S0273-0979-1993-00380-X
- Ehud Hrushovski and Boris Zilber, Zariski geometries, J. Amer. Math. Soc. 9 (1996), no. 1, 1–56. MR 1311822, DOI 10.1090/S0894-0347-96-00180-4
- Stanisław Łojasiewicz, Introduction to complex analytic geometry, Birkhäuser Verlag, Basel, 1991. Translated from the Polish by Maciej Klimek. MR 1131081, DOI 10.1007/978-3-0348-7617-9
- R. Moosa, Contributions to the model theory of fields and compact complex spaces, Ph.D. thesis. University of Illinois at Urbana-Champaign, 2001.
- Anand Pillay, Some model theory of compact complex spaces, Hilbert’s tenth problem: relations with arithmetic and algebraic geometry (Ghent, 1999) Contemp. Math., vol. 270, Amer. Math. Soc., Providence, RI, 2000, pp. 323–338. MR 1802020, DOI 10.1090/conm/270/04380
- Anand Pillay, Geometric stability theory, Oxford Logic Guides, vol. 32, The Clarendon Press, Oxford University Press, New York, 1996. Oxford Science Publications. MR 1429864
- A. Pillay and T. Scanlon, Compact complex manifolds with the DOP and other properties, J. Symbolic Logic, 67 (2002), no. 2, 737-743.
- Bruno Poizat, Groupes stables, Nur al-Mantiq wal-Maʾrifah [Light of Logic and Knowledge], vol. 2, Bruno Poizat, Lyon, 1987 (French). Une tentative de conciliation entre la géométrie algébrique et la logique mathématique. [An attempt at reconciling algebraic geometry and mathematical logic]. MR 902156
- T. Scanlon, Locally modular groups in compact complex manifolds, preprint 2000.
- Kenji Ueno, Classification theory of algebraic varieties and compact complex spaces, Lecture Notes in Mathematics, Vol. 439, Springer-Verlag, Berlin-New York, 1975. Notes written in collaboration with P. Cherenack. MR 0506253
- Henrik Reif Andersen, Model checking and Boolean graphs, ESOP ’92 (Rennes, 1992) Lecture Notes in Comput. Sci., vol. 582, Springer, Berlin, 1992, pp. 1–19. MR 1249946, DOI 10.1007/3-540-55253-7_{1}
Bibliographic Information
- Anand Pillay
- Affiliation: Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- MR Author ID: 139610
- Email: pillay@math.uiuc.edu
- Thomas Scanlon
- Affiliation: Department of Mathematics, University of California at Berkeley, Berkeley, California 94720-3840
- MR Author ID: 626736
- ORCID: 0000-0003-2501-679X
- Email: scanlon@math.berkeley.edu
- Received by editor(s): June 16, 2000
- Published electronically: June 24, 2003
- Additional Notes: The first author was partially supported by an NSF grant; the second, by an NSF MSPRF
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 3843-3859
- MSC (2000): Primary 30Dxx
- DOI: https://doi.org/10.1090/S0002-9947-03-03383-X
- MathSciNet review: 1990567