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RIGIDITY IN HOLOMORPHIC
AND QUASIREGULAR DYNAMICS

GAVEN J. MARTIN AND VOLKER MAYER

Abstract. We consider rigidity phenomena for holomorphic functions and
then more generally for uniformly quasiregular maps.

1. Introduction

1.1. Rigidity of rational functions. Fatou’s problem of the density of hyperbolic
maps in the space of rational functions is one of the major problems in the field
of holomorphic dynamics. It has been reduced by Mañé, Sad and Sullivan [13] to
the no invariant lines field (NILF) conjecture. A rational map f has an invariant
line field if the Julia set has positive Lebesgue measure, |Jf | > 0, and if there is a
measurable map z ∈ Jf 7→ Lz ∈ [0, π) with

Lf(z) = Lz + arg f ′(z) modπ.

It is well known that the map f has an invariant line field precisely when f
admits a quasiconformal deformation that is non-trivial on the Julia set. Now, the
NILF-conjecture suggests that a rational function does not admit an invariant line
field unless it is a map of a very special kind, that is, a Lattès map. An affirmative
answer to this conjecture implies the density of hyperbolic maps [13]. We recall
that a Lattès map is a rational function f that is obtained from semi-conjugating
an expanding similarity A(z) = λz, |λ| > 1, by a certain automorphic meromorphic
function h : C → Ĉ. Such maps f are then obtained as solutions of the functional
equation

(1.1) f ◦ h(z) = h ◦A(z), z ∈ C.

Next, from Zalcman’s normality criteria [30, 27] we know that each point z0 of
the Julia set Jf of f admits a renormalization of the following form. There are a
sequence of points zj → x0 and positive real numbers ρj ↘ 0 and a subsequence of
iterates fkj such that

(1.2) fkj (ρjz + zj)→ Ψ(z), z ∈ C,

the convergence is locally uniform in C and Ψ : C→ Ĉ is a non–constant meromor-
phic limit function.
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Following an analogy with the limit sets of Kleinian groups, we call a point
z0 ∈ Jf a conical point if the sequence above in (2) can be chosen to have the
additional property that there is a constant M <∞ such that

(1.3)
|z0 − zj |

ρj
< M,

and we require only that the convergence be uniform on D.
The set of conical points is denoted Λc. A typical conical point is a repelling

fixed point. In general Λc is a large subset of the Julia set, and in many cases, for
example the Lattès maps, we even have Λc = Jf . Reinforcing the analogy with
Kleinian groups, we shall see that examples of points in the Julia set which are not
conical are the parabolic fixed points (see Lemma 3.5).

Several other notions of conical points appear in the literature, and we discuss
these later in §3.

The following lemma gives a characterisation of a conical limit point which is
easier to work with.

Lemma 1.1. Let z0 ∈ Jf be a conical point for the mapping f . Then there are a
sequence ρj ↘ 0, an increasing sequence of natural numbers {kj}∞j=1 and a non–
constant meromorphic function Ψ such that

(1.4) fkj (z0 + ρjz)→ Ψ

uniformly in D.

Proof. Let ρj, zj , kj , Ψ and M be given as in the definition of a conical limit point.
Set φj(z) = ρjz + zj and ϕj(z) = ρjz + z0. Then

(1.5) fkj ◦ ϕj(z) = fkj ◦ φj(z) ◦ φ−1
j (z) ◦ ϕj(z).

The result now follows after passing to a subsequence, since fkj ◦ φj(z) → Φ and
the sequence φ−1

j (z) ◦ ϕj(z) = z + (z0 − zj)/ρj is precompact. �
We may reformulate the NILF-conjecture, replacing role of the Julia set by Λc.

We shall prove the following result:

Theorem 1.2. Suppose the conical set of the rational function f has positive
Lebesgue measure, |Λc| > 0. Then either f is a Lattès map or f has no invariant
line field.

Note that the conical set has either zero or full measure. Therefore the condition
|Λc| > 0 implies in particular that Jf = Ĉ. In view of the above result it would be
interesting to know an example of a rational function for which the Julia set has
positive measure and the conical set has zero measure. Such a phenomena appears
in the space of entire functions. McMullen [19] showed that f(z) = sin z has a
Julia set of positive measure and, since this function has a non-empty Fatou set,
its conical set has zero measure.

Theorem 1.2 is not really new (compare [20], [12], [6]). However, we give a new
and elementary proof of this fact that in particular does not involve any orbifold
theory. We use the possibility of renormalization at conical points to construct
explicitly the necessary automorphic function of the equation (1.1). A similar idea
has been used by Berteloot and Loeb in [1], where they gave a geometric description
of the Lattès maps. The proof we give also has the advantage that it does not use
that f is a global holomorphic map of Ĉ. Therefore, Theorem 1.2 is also true for
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entire functions. One of our primary motivations in looking for such a proof is its
applicability to higher-dimensional analogues of holomorphic dynamics, uniformly
quasiregular maps, which we now present.

1.2. Rigidity in higher dimensions. The maps we shall consider in the sequel
are self-maps of the n−sphere Rn = Rn ∪ {∞}, n ≥ 2, that preserve a conformal
structure. Such a structure is a bounded measurable map µ : Rn → S(n), the space
of symmetric positive definite n× n matrices of determinant 1. More precisely, let
f be a map that is in the Sobolev class W 1,n(Rn,Rn) whose Jacobian determinant
det f ′ > 0 almost everywhere. The pull-back action of f on a conformal structure
µ is given by

(1.6) f∗µ(x) = det (f ′(x)t)
−2
n f ′(x)µ(f(x))f ′(x) for a.e. x ∈ Rn .

We call f µ–rational if µ is f−invariant, meaning

(1.7) f∗µ = µ a.e.

This equation has the following geometric interpretation: Consider the field of µ–
spheres Σµx,r = {v ∈ Rn; tvµ(x)v = r}, which is in fact a measurable Euclidean
ellipsoid field on Rn such that the eccentricity of the ellipsoids is uniformly bounded.
Now, a µ–rational map is conformal in this structure in the sense that it preserves
this field of µ–spheres.

A µ–rational map is quasiregular (see §2 or [26] for appropriate definitions), and
the dilatation of any µ–rational map only depends on the eccentricity of the ellipsoid
field Σµx,r. Therefore, for a given conformal structure µ there is a fixed constant
K ≥ 1 such that any µ−rational map is K−quasiregular. In particular, if f is
µ−rational, then the family of all the iterates f ` has a uniform dilatation bound.
Such maps are called uniformly quasiregular, or uqr for brevity. Conversely, it is
known that any uqr map is µ−rational with respect to some conformal structure µ
[9].

In two dimensions the study of uqr maps reduces to the classical case of (holomor-
phic) rational functions. In fact, when µ ≡ Id is the standard Euclidean structure,
then (1.7) is nothing other than the usual Cauchy-Riemann system. If n = 2, the
Id−rational maps are precisely the holomorphic functions of Ĉ, and hence they
are rational maps. Moreover, from the Ahlfors-Bers measurable Riemannian map-
ping theorem (the existence theorem for quasiconformal mappings) it follows that
any uqr map in two dimensions is quasiconformally conjugate to a rational map.
Hence we restrict our investigation in two dimensions to the rational functions. The
picture is completely different for n ≥ 3. From Liouville’s theorem we find that
the only Id−rational mappings are Möbius transformations. The only way to pro-
duce non-injective uqr maps is to allow some distortion and very little regularity of
the conformal structure. Thus we consider only measurable conformal structures.
Nevertheless, it is a difficult task to write down explicit examples of uqr mappings
having degree at least two. This was first done by Iwaniec and Martin [9], and sub-
sequently other examples were given in [14], [17], [18]. In particular, Mayer’s paper
[17] exhibits the higher-dimensional Lattès maps. They are, as before, defined by
the functional equation (1.1), where this time h : Rn → Rn is a quasimeromorphic
map which is automorphic with respect to some crystallographic group.

The rigidity result we present below shows that there are in fact far fewer uqr
maps with a large Julia set than there are rational functions. We first explain how

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4352 GAVEN J. MARTIN AND VOLKER MAYER

this is related to Theorem 1.2. A quasiconfomal deformation of a rational map f is
again a rational function g with g = ϕ−1◦f◦ϕ and ϕ a quasiconformal mapping that
is not a Möbius transformation. Let us say that such a deformation is non-trivial on
the Julia set if the Lebesgue measure of the Julia set |Jf | > 0 and if the restriction
of ϕ to Jf is not the restiction of a holomorphic map. Note that such a conjugacy
induces an f–invariant conformal structure µ = ϕ∗Id, and, conversely, it follows
from the Ahlfors-Bers theorem that a rational map that preserves a conformal
structure can be quasiconformally deformed. Since we are deforming holomorphic
functions, one can replace in this discussion the conformal structures by simpler
objects such as the invariant line fields (for instance the line field generated by the
major axis of the ellipse field that is induced by an invariant conformal structure).
Thus we can reformulate Theorem 1.2 in the following way:

If f is a rational function with |Λc| > 0, then either f is a Lattès map, or the
standard structure Id is the unique f−invariant conformal structure.

When the dimension n ≥ 3, this second alternative cannot occur, since an
Id−rational map is a Möbius transformation. Hence the following result is the
precise higher-dimensional analogue of Theorem 1.2. One might compare this with
the classical Mostow rigidity theorem.

Theorem 1.3. Either the set of conical points Λc of a map f ∈ UQR(Rn), n ≥ 3,
has zero measure, or f is a chaotic Lattès map (and then Λc = Rn).

This higher-dimensional rigidity result suggests that the NILF-conjecture has
the following generalization:

Conjecture 1.4. Suppose f ∈ UQR(Rn), n ≥ 3, with a Julia set of positive
measure (or possibly Jf = Rn). Then f is a Lattès map.

Note that the Lattès examples are quite rare in the space of all rational functions
and even in the subspace of those functions that have a conical set of positive
measure. Here are two examples.

Example 1.5. The rational functions

fp(z) =
(

1− 2
z

)2p

, p = 1, 2, ...,

are all semi-hyperbolic with Jfp = Λc = Ĉ. But the only Lattès map of this family
corresponds to the value p = 1. Therefore, only f1 has a higher-dimensional uqr
analogue.

The degree of the above functions does increase with p. But we may fix this
degree and see the same phenomenon from Lyubich’s family

gλ(z) = 1− λ

z2
, λ ∈ C∗.

The parameter space C∗ contains a subset Irr of unstable values (see [11] for
details). There is only one parameter λ = 2 ∈ Irr that corresponds to a Lattès
map. On the other hand, a dense subset of Irr gives rise to strictly critically finite
maps which have Λc = Ĉ. So, all these values of the big space Irr (which is in fact
a set of positive measure, as Rees [25] has shown) reduce to one point λ = 2 in
higher dimensions.
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However, the aforementioned uqr map in [9] is not obtained by a Lattès con-
struction, and the space UQR(Rn) may well contain many other examples with
Cantor or other small Julia sets.

Figure 1. The set Irr

2. Quasiregularity and conformal structures

In this section we shall recall some of the necessary facts concerning uqr maps
and conformal structures. The notation we use is quite standard. Bn denotes the
unit ball of Rn and Sn−1 its boundary. In two dimensions we often use complex
notation and write for example D = B2.

2.1. Uniformly quasiregular mappings. Let D ⊂ Rn be a domain and f : D →
Rn a mapping of Sobolev class W 1,n

loc (D,Rn). We shall only consider orientation-
preserving mappings; thus det f ′(x) > 0 for a.e. x ∈ D. Such a mapping is said to
be K-quasiregular , where 1 ≤ K <∞, if

max|h|=1|f ′(x)h| ≤ Kmin|h|=1|f ′(x)h| for a.e. x ∈ D.
The smallest number K for which the above inequality holds is called the dilatation
of f . A non–constant quasiregular mapping can be redefined on a set of measure
zero so as to make it continuous, open and discrete, and we shall always assume
this to be the case. If D is a domain of the compactification Rn (equipped with
the spherical metric; thus Rn is isometric via stereographic projection with the
n-sphere Sn), then we use the chart at infinity x 7→ x/|x|2 to extend the notion of
quasiregularity to mappings f : D → Rn in the obvious manner. Such mappings
are also said to be quasimeromorphic . A mapping f of a domain D into itself is
called uniformly quasiregular (uqr) if there is some 1 ≤ K < ∞ such that all the
iterates fk are K-quasiregular. We abbreviate this to f ∈ UQR(D).
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The branch set Bf is the set of points x ∈ D for which f is not locally homeo-
morphic at x. In the setting of uqr mappings there are analogues of the Picard and
Montel theorems due to Rickman [26]. An easy application is that the exceptional
set Ef of a K−uqr map f , the set of points that have only a finite number of images
and preimages, contains at most a finite number q = q(K,n) of points. Also we
have the usual property

(2.1)
⋃
k≥0

fk(Ω) ⊃ Rn \ Ef

for every open set Ω that intersects the Julia set (see [15]).
The other important normality criterion is the following quasiregular version of

Zalcman’s lemma. It is due to Miniowitz [23].

Zalcman’s Lemma. A family F of K−quasiregular mappings f : Bn → Rn is not
normal at x0 if and only if there are positive numbers ρj → 0, points xj → x0 and
mappings fj ∈ F such that

(2.2) fj(xj + ρjx)→ Ψ(x)

spherically uniformly on compact subsets of Rn, where Ψ : Rn → Rn is a non–
constant quasimeromorphic map.

In fact Miniowitz’s proof does not include the condition xj → x0. However, it
can easily be achieved with slight modifications.

2.2. Conformal structures. Let µ : Rn → S(n) be a measurable conformal struc-
ture as defined in §1. If we forget for a moment the boundedness and determinant
1 condition, then µ can be viewed as a standard Riemannian metric with measur-
able coefficients. Since the notion of conformality does not change if we rescale
the metric, this explains the canonical normalisation to require that det µ(x) = 1
for a.e. x ∈ Rn. The boundedness condition is necessary in order to retain the
structures that are adapted to quasiregular mappings. It implies that there is a
constant K ≥ 1 such that

1
K
|X |2 ≤ tX µ(x) X ≤ K|X |2 for all X ∈ Rn and a.e. x ∈ Rn.

As we explained in §1, a conformal structure should really be viewed as a measurable
field of ellipsoids of bounded eccentricity.

Recall the pull-back of a conformal structure µ by a quasiregular mapping f :

f∗µ(x) = f ′(x)[µ ◦ f(x)] :=
tf ′(x) µ(f(x)) f ′(x)

det f ′(x)
2
n

for a.e. x ∈ Rn,

and note that this pull-back behaves nicely under composition:

(f1 ◦ f2)∗µ = f∗2 (f∗1µ).

Consequently, if f is µ−rational (µ(x) = f∗µ(x), a.e.), then it is automatically
uniformly quasiregular. The converse is

Theorem ([9]). A mapping of the Sobolev class W 1,n(Rn,Rn) is uniformly quasi-
regular if and only if it is µ–rational for some measurable conformal structure µ.
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For completeness we recall the following theorem in the form we shall use it.

Liouville’s Theorem. Let f : U → V be quasiregular with U, V domains of Rn
and n ≥ 3. If f∗Id = Id, then f is the restriction of a Möbius transformation.

We have seen that in the context of quasiregular mappings there are powerful
normality criteria. Recall too that if a sequence {fj} of K–quasiregular mappings
converges to a mapping f , then f is either constant or a quasiregular mapping.
It will be important in our applications to know whether or not the conformal
structures µfj = f∗j Id also converge. In general this is not the case (see [10, IV,
5.4]).

In order to make clear the notion of convergence in the space of matrices S(n) we
recall now how the metric δ is defined in that space (see Helgason [7] for details).
First of all, the general linear group Gl(n,R) acts on S(n) via the rule

A 7→ X [A] = |detX |− 2
n
t
XAX, X ∈ Gl(n,R), A ∈ S(n),

and the metric δ is invariant under this action. In particular,

δ(A,B) = δ(
√
B
−1

[A], Id) = δ(
√
B
−1
A
√
B
−1
, Id), A,B ∈ S(n),

where
√
B is the symmetric positive defined square root of B. The distance between

A ∈ S(n) and the Id is given by

δ(A, Id) = ‖ log A‖ =

(
n∑
i=1

(log λi)2

) 1
2

,

where λ1, ..., λn are the eigenvalues of the matrix A.
The following positive answer to the problem of convergence of conformal struc-

tures is due to Tukia [29]:

Good Approximation Lemma. Suppose the K−quasiregular mappings fj con-
verge to the non–constant mapping f . Suppose further that the conformal structures
µfj = f∗j Id converge in measure to µ. Then µ = µf := f∗Id.

Proof. It suffices to verify the lemma for the restriction of the mappings to an
arbitrary small domain D on which f is injective. Then the fj are also injective
provided j is big enough. But for quasiconformal mappings the good approximation
lemma is precisely Corollary D of [29]. �

3. Conical points

3.1. Definition of the conical points. The concept of conical limit points has
many important applications in the setting of Kleinian groups. Recall that a point
x0 ∈ Sn−1 is called a conical point of the Kleinian group Γ ⊂Möb(Bn) if there are
elements γj ∈ Γ and a geodesic ray σ ⊂ Bn ending at x0 so that the hyperbolic dis-
tance δ(γj(0), σ) stays bounded and γj(0)→ x0. These conical points are precisely
the points that allow a nice renormalization: there is ρj → 0+ so that

γ−1
j ◦ αj(x) = γ−1

j (ρjx+ x0)→ Ψ(x),

a non–constant conformal map. If we compare this with Zalcman’s lemma, then we
see that it is natural to consider the points x0 of the Julia set of a given map f for
which we have a renormalization (2.2) with a constant translation vector xj ≡ x0.
We use a local version of this to define the set of conical points as in Lemma 1.1.
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Definition 3.1. A point x0 is called a conical point for the uqr mapping f if there
are a sequence of positive numbers ρj ↘ 0 and a sequence of iterates fkj so that

(3.1) fkj (x0 + ρjx)→ Ψ(x)

uniformly on Bn, where Ψ : Bn → Rn is a non–constant quasimeromorphic map-
ping. The set of conical points is denoted Λc.

From the above discussion (see also the preamble to Lemma 1.1) we see that
this definition is universal in the sense that it applies equally to Kleinian groups,
rational functions, and also to uqr maps.

3.2. The case of rational maps. A nice feature of the conical set is that it is
always a large subset of the Julia set, and in many cases we even have the equality
Λc = Jf . In particular, this is true for all known uqr maps in dimensions n ≥ 3.
To illustrate what happens in two dimensions, we now discuss in greater detail
the notion of conical points for rational functions. First of all we formulate an
equivalent definition of Λc:

Lemma 3.2. Let f be a rational function, and denote by U(x0, f
k, δ) the component

of f−k(D(fk(x0), δ)) that contains x0. The point x0 is conical if and only if there
are constants δ > 0, d ∈ N and a sequence kj →∞ so that

(3.2) fkj : U(x0, f
kj , δ)→ D(fkj (x0), δ)

has degree no more than d.

Proof. Clearly, if x0 ∈ Λc, then (3.2) holds with d being the degree of the non–
constant limit map at x0. Conversely, if (3.2) is true, then we see from the maximum
principle that the components Uj = U(x0, f

kj , δ) are simply connected domains.
Now choose αj(x) = ρjx + x0 with ρj > 0 maximal so that αj(D) ⊂ Uj . Then
Ψj = fkj ◦ αj is a normal family, and since the degree of these maps is uniformly
bounded it easily follows from the distortion lemma [2, Lemma 2.2] that any limit
function of a convergent subsequence of {Ψj} cannot be a constant map. �

Several other notions of conical points appear in the literature. From (3.2) we see
that the above definition appears in Appendix 3 of [24], where Przytycki compares
different notions of conical points. We also see that Λc is somehow in the spirit
of the conical set of Lyubich and Minsky [12]. McMullen [21] and independently
Urbanski [3] call a point conical if the mappings in (3.2) can be chosen to be
conformal. Points satisfying the condition (3.1) also have been used and studied in
the recent paper [6] of Häıssinsky.

Recall that a rational map f is
• hyperbolic if there is δ > 0 so that for any x ∈ Jf and any k ∈ N the map
fk : U(x, fk, δ)→ D(fk(x), δ) is injective,
• semi-hyperbolic if there is δ > 0 so that for any x ∈ Jf and any k ∈ N the

degree of fk : U(x, fk, δ) → D(fk(x), δ) is at most d0, for some fixed d0,
and
• topological Collet-Eckmann if there are δ > 0 and N ∈ N so that for any
x ∈ Jf there is a subsequence kj so that first kj+1 ≤ Nkj and second the
degree of fkj : U(x, fkj , δ) → D(fkj (x), δ) is at most d0, with again d0

some fixed maximal degree.
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From (3.2) it immediately follows that Λc = Jf in the case of a hyperbolic, semi-
hyperbolic or topological Collet-Eckmann map f . Here is another fact illustrating
that Λc is a big subset of the Julia set for general maps. It is a consequence of work
of Ledrappier (see [4, p.611]).

Theorem 3.3. Let f be a rational function and µ any f-conformal probability mea-
sure with positive Lyapunov exponent (for example, µ = µf , the maximal entropy
measure). Then the conical set has full µ−measure, i.e. µ(Λc) = 1.

3.3. General properties of Λc. We finally discuss some elementary properties of
the conical set Λc. A nice property is the following:

Lemma 3.4. The set of conical points is completely invariant, i.e.

Λc = f(Λc) = f−1(Λc).

Proof. This follows immediately from the standard distortion estimates (see for
example [26, p.37]). �

From the renormalization description we see that conical points dynamically
behave like repelling points. It is no surprise, though, that neutral fixed points
cannot be in Λc.

Lemma 3.5. Conical points that are also fixed points are always repelling.

Proof. Suppose x0 is a fixed point of f . If x0 ∈ Λc, then there are constants
δ > 0, d ∈ N and a sequence of components Uj = U(x0, f

nj , δ) with Uj+1 ⊂ Uj
and so that fnj : Uj → B(x0, δ) has degree less or equal to d. Observe that
fnj+1−nj : Uj+1 → Uj and that all but a finite number of these mappings have to
be injective. It follows that x0 is a repelling fixed point. �

In our theorems the condition |Λc| > 0 appears. Let us clarify that in fact we
have the following dichotomy:

Lemma 3.6. The conical set of any uqr map f has either zero or full Lebesgue
measure.

Proof. Suppose that |Λc| > 0. It suffices then to renormalize a density point x0 ∈ Λc
to find an open set Ω such that Λc has full measure in Ω. The conclusion follows
then from (2.1) since Jf ∩ Ω 6= ∅. �

4. Lattès examples

Since they play an essential role in this paper, we recall here the construction
and some properties of the (chaotic) Lattès examples of [17]. We refer to this paper
for more details.

The construction is based on the existence of quasimeromorphic versions of the
Weierstrass P-function (compare [16]). This is a quasimeromorphic map h : Rn →
Rn that is automorphic with respect to a crystallographic group Γ ⊂ Isom(Rn),
i.e., h has the following two properties:

1) h ◦ γ = h for all γ ∈ Γ, and
2) Γ acts transitively on fibers: Whenever h(x1) = h(x2), there exists an

element γ ∈ Γ such that γ(x1) = x2.
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Due to these properties, the image Rn = h(Rn) can be identified with the orbifold
Rn/Γ. Now, every expanding similarity A(x) = λUx, λ > 1 and U ∈ O(n), can be
projected by h to a uqr map f provided A satisfies the condition A ◦ Γ ◦A−1 ⊂ Γ.
Then we have the following diagram:

Rn A−→ Rn

h ↓ ↓ h(4.1)

Rn f−→ Rn

In this way we get a family of uqr maps that all have a chaotic dynamical behavior:
Their Julia set is the whole space Jf = Rn. In two dimensions, with h the holo-
morphic Weierstrass P−function and with A(z) = 2z, the function fLat is precisely
the function Lattès constructed in order to get the first example of a rational map
with Jf = Ĉ.

It is easy to see that Lattès maps are semi-hyperbolic. Therefore Λc = Jf = Rn.
For these Lattès maps, one knows precisely all the possible invariant conformal

structures (see [17, Thm. 3]). The canonical way to associate an invariant confor-
mal structure µ to a map f that is defined by (4.1) is to push forward the standard
Euclidean structure: Id = h∗µ. The special property of Lattès maps is that they
may have several invariant conformal structures. In fact, several crystallographic
groups Γ preserve other (constant) structures M than just the Euclidean Id struc-
ture. If A also preserves it, then M induces an f−invariant structure ν which is
different from the previous one and given by M = h∗ν. In the case of Lattès’
original example fLat it is easy to check that any constant matrix M ∈ S(2) gives
rise to an invariant conformal structure.

In the case where h is automorphic with respect to a group that is not cocom-
pact, one obtains two other types of examples: Maps that behave like power or
Tchebyshev polynomials. This larger class of maps is called Lattès-type maps.

5. Rigidity on the conical set of rational functions

We prove here a pointwise rigidity result which implies Theorem 1.2.

Theorem 5.1 (Pointwise rigidity for rational maps). Let f be a rational function
and µ an f−invariant nontrivial dilatation. If µ is continuous in measure at a
conical point x0 ∈ Λc, then f is a Lattès map.

Recall that a measurable function µ is continuous in measure at a point x0 if for
every ε > 0

lim
r→0

1
|D(x0, r)|

|{x ∈ D(x0, r) ; δ(µ(x), µ(x0)) > ε}| = 0,

and that a measurable function is continuous in measure almost everywhere (see
[5, Thm. 2.9.13], where this notion is called approximate continuity).

Theorem 1.2 is a direct consequence of the above result:

Proof of Theorem 1.2. Suppose that the rational map f has an invariant line field.
Then it also has a (nontrivial) f−invariant conformal structure µ. This function µ
is measurable and hence continuous in measure almost everywhere. Since |Λc| > 0,
there is x0 ∈ Λc with µ continuous in measure at x0. The result follows now from
Theorem 5.1. �
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A further application is that a quasiconformal deformation cannot be smooth at
a conical point.

Corollary 5.2. Suppose f and g are rational functions and ϕ a quasiconformal
map (but not a Möbius transformation) such that g ◦ϕ = ϕ ◦ f . If the derivative of
ϕ is continuous in measure at a conical point of f , then f and g are Lattès maps.

Proof. The dilatation µ = ϕ∗Id is g−invariant and continuous in measure at a
conical point. The corollary now follows from Theorem 5.1. �

There is an analogous result in the context of Kleinian groups due to Ivanov
[8]. He also has a rigidity result at so-called horospherical points involving some
additional smoothness of the conjugating map ϕ. One might introduce the no-
tion of horospherical point in holomorphic dynamics and generalize his results to
holomorphic dynamics. We shall address this elsewhere.

Proof of Theorem 5.1. Let x0 ∈ Λc with µ continuous in measure at x0. We first
renormalize at x0: There are nj →∞ and αj(x) = rjx+ x0 so that

Ψ = fnj ◦ αj → Ψ : D→ Ω = Ψ(D)

uniformly with Ψ a non–constant holomorphic map. Consider the pull-back dilata-
tions ν = Ψ∗µ and νj = Ψ∗jµ. From the f−invariance of µ it follows that

νj = α∗j [(fnj )∗µ] = α∗jµ = µ ◦ αj .
Let ε > 0 and consider the set

Eε,j = {x ∈ D ; δ(νj(x), µ(x0)) > ε} = {w ∈ Dj = αj(D) ; δ(µ(w), µ(x0)) > ε}.
Then, from the continuity in measure of µ at x0, we see that

|Eε,j | =
1
|Dj|
|{w ∈ Dj = αj(D) ; δ(µ(w), µ(x0)) > ε}| → 0

when j → ∞, meaning that νj converges in measure to the constant dilatation
ν ≡ µ(x0).

We claim that this constant dilatation ν ≡ µ(x0) is non-trivial. In fact, suppose
that ν ≡ Id on D. The map Ψ being holomorphic, this would imply µ ≡ Id on
the domain Ω. Since Ω ∩ Jf 6= ∅, there is for any ε > 0 an integer n so that
fn(Ω) ⊃ Ĉ \ Nε(Ef ), with Nε(Ef ) the ε−neighborhood of the exceptional set. It
follows that µ ≡ Id, contradicting our standard hypothesis that µ is nontrivial.

Now choose a point w ∈ Ω of a repelling cycle and suppose that this is a fixed
point of g = fk. Up to composition of Ψ by a translation we may suppose that
Ψ(0) = w. In a neighborhood U of this origin we can define ϕ by

(5.1) Ψ ◦ ϕ(x) = g ◦Ψ(x) for x ∈ U.
For this holomorphic map ϕ, the dilatation ν is invariant, i.e. ϕ∗ν = ν. Therefore,
if θx is the direction of the major axis of the ellipse field generated by µ, we have

θϕ(x) = θx + arg ϕ′(x) mod π.

In fact, we shall consider the associated invariant line field. Remember that ν is
constant, and so θϕ(x) = θx. It follows that

(5.2) ϕ(x) = λx for some real λ.
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From (5.1) we see that Ψ linearizes g at w, and this map can be extended in the
usual way using (5.1) to a global map Ψ : C→ Ĉ \ Ef such that g ◦Ψ(x) = Ψλ(x)
for every x ∈ C.

We finally verify that Ψ is in fact an elliptic function. Consider two points x1

and x2 (neither one critical) with Ψ(x1) = Ψ(x2). Then one can define near x1 a
map γ with Ψ ◦ γ = Ψ. This holomorphic map γ also preserves ν, and, as before,
it follows that γ(x) = αx + β (with α real). The set of all possible such mappings

Γ = {γ affine with Ψ ◦ γ = Ψ}

is a discrete group that acts transitively on fibers of Ψ. Consequently, the elements
of Γ have to be isometries, and g is a power, Tchebyshev or Lattès map. Moreover,
since power and Tchebyshev maps are (globally) rigid, g has to be a Lattès map.

It then follows that f itself is a Lattès map. For example, using again the
invariant line field argument (5.2), one sees that Ψ linearizes f at any (necessarily
repelling) fixed point, and hence the automorphic function Ψ semiconjugates a
scalar multiplication and f . �

6. Rigidity of uniformly quasiregular mappings

In this section we show that the chaotic Lattès maps are the only uqr mappings
with a set of conical points of positive measure.

Theorem 6.1 (Pointwise rigidity for uqr maps). Suppose f is a µ−rational map
of Rn, n ≥ 3, and that µ is continuous in measure at a conical point x0 ∈ Λc. Then
f is a Lattès-type map.

As a first consequence we have the following.

Proof of Theorem 1.3. Since a measurable function is almost everywhere continu-
ous in measure, Theorem 1.3 follows immediately from Theorem 6.1. �

There is another rigidity phenomenon which follows from Theorem 6.1: For a
hyperbolic Blaschke product B of the unit disc, one knows that the induced circle
action B : S1 → S1 is quasisymmetrically conjugate to z 7→ zd, where d is the
degree of B. But this conjugacy is always singular, except when B is actually the
power map z 7→ zd (see [28]). In higher dimensions we also have natural uqr power
maps [17]. Their Julia (and conical) set is the sphere Sn−1, and their restrictions
to this sphere are Lattès maps. Theorem 6.1 implies that all higher-dimensional
“hyperbolic uqr-Blaschke products” share this property:

Corollary 6.2. Let f be a uqr map of Rn, let n ≥ 4 and suppose that Λc = Jf =
Sn−1. Then the restriction of f to Sn−1 is a Lattès map.

There is one dimension left, and it is natural to ask what happens when n = 3.
This problem leads to the question of which chaotic rational maps do admit a uqr
extension to the 3−ball. Lattès maps have such an extension, namely the power
mappings of [17]. The above corollary suggests that these are the only exceptions.

Proof of Theorem 6.1. We start with the same renormalization argument as in the
Proof of Theorem 5.1: Since x0 ∈ Λc, there are ρj → 0+ and kj →∞ so that

Ψj(x) = fkj ◦ αj(x) = fkj (ρjx+ x0)→ Ψ(x), x ∈ Bn,
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uniformly on Bn, where Ψ is non–constant and quasimeromorphic. Consider again
the pull-back structures ν = Ψ∗µ and νj = Ψ∗jµ. From the f−invariance of µ and
the fact that µ is continuous in measure at x0, it follows, precisely as in the proof
of Theorem 5.1, that νj converges to the constant structure x 7→ µ(x0). The good
approximation lemma asserts that

ν = lim
j→∞

νj ≡ µ(x0).

Now choose L : Rn → Rn affine with L∗µ(x0) = Id, and denote

h = Ψ ◦ L : Bn → Ω = h(Bn).

Then h∗µ := (Ψ ◦ L)∗µ = Id.
The next step is to lift some iterate of f by h. Let V = B(h(0), δ) ⊂ Ω, and U

the connected component of h−1(V ) that contains 0. If δ is sufficiently small, then
h : U → V is a proper map (see [26]). Since

Ψj+N (x) = fkj+N−kj ◦Ψj(
ρj+N
ρj

x),

we can choose l = kj+N − kj >> 0 so that V0 ⊂ V , where V0 is the component of
f−l(V ) that contains Ψj(0). Denote finally by U0 ⊂ U a component of h−1(V0).
We therefore have the following diagram of proper mappings:

U0 U

h ↓ ↓ h(6.1)

V0
f l−→ V

In this picture there is one map missing, say A : U0 → U . We obtain it in lifting
f l. In order to do this, let W ⊂ V be a domain such that a branch H : W → W ′ =
H(W ) ⊂ U of h−1 exists, and denote by W ′0 ⊂ U0 a component of (f l ◦ h)−1(W ).
Then we can define

A := H ◦ f l ◦ h : W ′0 →W ′.

Since the h−pull-back of µ is the standard structure and µ is f−invariant, the lifted
map A has the property A∗Id = Id.

From Liouville’s theorem it follows that A is (the restriction of) a Möbius trans-
formation. Using analytic continuation (cf. the proof of Proposition 6.3 in [18]),
we see that

(6.2) h ◦A(x) = f l ◦ h(x) for every x ∈ U0.

Since U0 ⊂ U , the map A is a loxodromic Möbius transformation with a repelling
fixed point a0 ∈ U0. We may suppose that the repelling fixed point is ∞.

The map h linearizes f l at the repelling fixed point b = h(a) and, using (6.2), we
can extend this map to h : Rn → Rn so that the conjugation (6.2) is true globally.

At this stage we can conclude using [18, §6]. Let us just briefly outline how
to proceed. Suppose that x1, x2 are two points that are not branch points of h
and so that h(x1) = h(x2) = y. Then we can define locally an inverse branch H
of h with H(y) = x2. This defines locally near x1 a map γ = H ◦ h sending x1

onto x2. Clearly γ is an Id−rational map, and hence the restriction of a Möbius
transformation. Using analytic continuation again, we see that h ◦ γ = h is true in
the whole of Rn. It suffices now to consider the set

Γ = {γ ∈Möb(Rn) ; h ◦ γ = h}.
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It turns out that Γ is a discrete group of isometries and that h is automorphic with
respect to this group.

We have shown that f l is of Lattès-type, and therefore so is f (see [18, Prop.
5.1]). �
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