Examples for the mod $p$ motivic cohomology of classifying spaces
HTML articles powered by AMS MathViewer
- by Nobuaki Yagita
- Trans. Amer. Math. Soc. 355 (2003), 4427-4450
- DOI: https://doi.org/10.1090/S0002-9947-03-03177-5
- Published electronically: July 2, 2003
- PDF | Request permission
Abstract:
Let $BG$ be the classifying space of a compact Lie group $G$. Some examples of computations of the motivic cohomology $H^{*,*}(BG;\mathbb {Z}/p)$ are given, by comparing with $H^*(BG;\mathbb {Z}/p)$, $CH^*(BG)$ and $BP^*(BG)$.References
- R.Field. On the Chow ring of classifying space $BSO(2n,C)$ preprint (2000).
- David J. Green and Ian J. Leary, Chern classes and extraspecial groups, Manuscripta Math. 88 (1995), no. 1, 73–84. MR 1348791, DOI 10.1007/BF02567806
- Po Hu and Igor Kriz, Some remarks on Real and algebraic cobordism, $K$-Theory 22 (2001), no. 4, 335–366. MR 1847399, DOI 10.1023/A:1011196901303
- Kouichi Inoue, The Brown-Peterson cohomology of $B\textrm {SO}(6)$, J. Math. Kyoto Univ. 32 (1992), no. 4, 655–666. MR 1194107, DOI 10.1215/kjm/1250519400
- Akira Kono and Nobuaki Yagita, Brown-Peterson and ordinary cohomology theories of classifying spaces for compact Lie groups, Trans. Amer. Math. Soc. 339 (1993), no. 2, 781–798. MR 1139493, DOI 10.1090/S0002-9947-1993-1139493-4
- I. J. Leary, The integral cohomology rings of some $p$-groups, Math. Proc. Cambridge Philos. Soc. 110 (1991), no. 1, 25–32. MR 1104598, DOI 10.1017/S0305004100070080
- Marc Levine and Fabien Morel, Cobordisme algébrique. II, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 9, 815–820 (French, with English and French summaries). MR 1836092, DOI 10.1016/S0764-4442(01)01833-X
- Marc Levine and Fabien Morel, Cobordisme algébrique. I, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), no. 8, 723–728 (French, with English and French summaries). MR 1843195, DOI 10.1016/S0764-4442(01)01832-8
- A. S. Merkur′ev and A. A. Suslin, $K$-cohomology of Severi-Brauer varieties and the norm residue homomorphism, Izv. Akad. Nauk SSSR Ser. Mat. 46 (1982), no. 5, 1011–1046, 1135–1136 (Russian). MR 675529
- Fabien Morel and Vladimir Voevodsky, $\textbf {A}^1$-homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999), 45–143 (2001). MR 1813224, DOI 10.1007/BF02698831
- S. P. Novikov, Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat. 31 (1967), 855–951 (Russian). MR 0221509
- Rahul Pandharipande, Equivariant Chow rings of $\textrm {O}(k),\ \textrm {SO}(2k+1)$, and $\textrm {SO}(4)$, J. Reine Angew. Math. 496 (1998), 131–148. MR 1605814, DOI 10.1515/crll.1998.025
- Daniel Quillen, The $\textrm {mod}$ $2$ cohomology rings of extra-special $2$-groups and the spinor groups, Math. Ann. 194 (1971), 197–212. MR 290401, DOI 10.1007/BF01350050
- Douglas C. Ravenel, W. Stephen Wilson, and Nobuaki Yagita, Brown-Peterson cohomology from Morava $K$-theory, $K$-Theory 15 (1998), no. 2, 147–199. MR 1648284, DOI 10.1023/A:1007776725714
- Björn Schuster and Nobuaki Yagita, Transfers of Chern classes in BP-cohomology and Chow rings, Trans. Amer. Math. Soc. 353 (2001), no. 3, 1039–1054. MR 1804412, DOI 10.1090/S0002-9947-00-02647-7
- Hirotaka Tamanoi, The image of the BP Thom map for Eilenberg-Mac Lane spaces, Trans. Amer. Math. Soc. 349 (1997), no. 3, 1209–1237. MR 1401530, DOI 10.1090/S0002-9947-97-01826-6
- Michishige Tezuka and Nobuaki Yagita, The varieties of the mod $p$ cohomology rings of extra special $p$-groups for an odd prime $p$, Math. Proc. Cambridge Philos. Soc. 94 (1983), no. 3, 449–459. MR 720796, DOI 10.1017/S0305004100000840
- M. Tezuka and N. Yagita, Cohomology of finite groups and Brown-Peterson cohomology, Algebraic topology (Arcata, CA, 1986) Lecture Notes in Math., vol. 1370, Springer, Berlin, 1989, pp. 396–408. MR 1000392, DOI 10.1007/BFb0085243
- Hirosi Toda, Cohomology $\textrm {mod}$ $3$ of the classifying space $BF_{4}$ of the exceptional group $\textbf {F}_{4}$, J. Math. Kyoto Univ. 13 (1973), 97–115. MR 321086, DOI 10.1215/kjm/1250523438
- Burt Totaro, Torsion algebraic cycles and complex cobordism, J. Amer. Math. Soc. 10 (1997), no. 2, 467–493. MR 1423033, DOI 10.1090/S0894-0347-97-00232-4
- Burt Totaro, The Chow ring of a classifying space, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 249–281. MR 1743244, DOI 10.1090/pspum/067/1743244
- Gabriele Vezzosi, On the Chow ring of the classifying stack of $\textrm {PGL}_{3,\mathbf C}$, J. Reine Angew. Math. 523 (2000), 1–54. MR 1762954, DOI 10.1515/crll.2000.048
- Gabriele Vezzosi, Brown-Peterson spectra in stable $\Bbb A^1$-homotopy theory, Rend. Sem. Mat. Univ. Padova 106 (2001), 47–64. MR 1876212
- V. Voevodsky. The Milnor conjecture. Preprint (1996).
- V. Voevodsky, Voevodsky’s Seattle lectures: $K$-theory and motivic cohomology, Algebraic $K$-theory (Seattle, WA, 1997) Proc. Sympos. Pure Math., vol. 67, Amer. Math. Soc., Providence, RI, 1999, pp. 283–303. Notes by C. Weibel. MR 1743245, DOI 10.1090/pspum/067/1743245
- V. Voevodsky. Reduced power operations in motivic cohomology. preprint (2001).
- Nobuaki Yagita, On relations between Brown-Peterson cohomology and the ordinary mod $p$ cohomology theory, Kodai Math. J. 7 (1984), no. 2, 273–285. MR 744140, DOI 10.2996/kmj/1138036912
- Nobuaki Yagita, Localization of the spectral sequence converging to the cohomology of an extra special $p$-group for odd prime $p$, Osaka J. Math. 35 (1998), no. 1, 83–116. MR 1621252
- N. Yagita. Chow ring of classifying spaces of extraspecial $p$ groups. Recent progress in homotopy theory, Contemp. Math. 293 (2002) 397-409.
Bibliographic Information
- Nobuaki Yagita
- Affiliation: Department of Mathematics, Faculty of Education, Ibaraki University, Mito, Ibaraki, Japan
- MR Author ID: 185110
- Email: yagita@mx.ibaraki.ac.jp
- Received by editor(s): January 10, 2002
- Published electronically: July 2, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 4427-4450
- MSC (2000): Primary 55P35, 57T25; Secondary 55R35, 57T05
- DOI: https://doi.org/10.1090/S0002-9947-03-03177-5
- MathSciNet review: 1990757