
TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 355, Number 11, Pages 4267–4296
S 0002-9947(03)03264-1
Article electronically published on July 8, 2003

ON MODEL COMPLETE DIFFERENTIAL FIELDS

E. HRUSHOVSKI AND M. ITAI

Abstract. We develop a geometric approach to definable sets in differentially
closed fields, with emphasis on the question of orthogonality to a given strongly
minimal set. Equivalently, within a family of ordinary differential equations,
we consider those equations that can be transformed, by differential-algebraic
transformations, so as to yield solutions of a given fixed first-order ODE X.
We show that this sub-family is usually definable (in particular if X lives on
a curve of positive genus). As a corollary, we show the existence of many
model-complete, superstable theories of differential fields.

Introduction

A classical theorem of Macintyre ([16], cf. also [4]) states that every infinite ω-
stable field is algebraically closed. This has led to speculation that, by analogy,
every infinite ω-stable differential field is differentially closed. We show here (§3)
that this is not the case; there are many theories of differential fields admitting
quantifier elimination, and more ω-stable ones.

In this paper, all fields have characteristic 0. All formulas will be quantifier-free
formulas in the language of differential fields. A formula is strongly minimal if
every quantifier-free definable subset, in any differential field extension, is finite or
cofinite.

Shelah’s work on superstable theories led to the understanding that in a theory
of Morley rank ω, such as differentially closed fields of characteristic 0 (with a single
derivation), the strongly minimal sets control much of the structure of the models.
(One must actually consider infinitely definable minimal types; it is not known if
every such type arises from a strongly minimal set, in the differential field context.)
In particular, [26] gave a general criterion for minimality of prime models in totally
transcendental theories; this led to one of the early applications of stability theory
to the subject, the independent proof in [27], [23], [11] of the non-minimality of the
differential closure. All proved, in different ways, the existence of strongly minimal
sets with trivial induced structure.

The following instance of Shelah’s philosophy is relevant to this paper: an alge-
braically closed differential field K is differentially closed iff every strongly minimal
formula over K has a solution in K ([19]). Indeed, the general theory of super-
stability reduces to formulas that are either strongly minimal, or else are part of
a definable principal homogeneous space for a connected definable simple group of
finite Morley rank. Any such group is associated with a certain strongly minimal

Received by the editors August 1, 1998.
2000 Mathematics Subject Classification. Primary 03C60, 12H05.
The first author thanks Miller Institute at the University of California, Berkeley.

c©2003 American Mathematical Society

4267

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4268 E. HRUSHOVSKI AND M. ITAI

set. A more specific study of the strongly minimal sets ([9]) and definable Galois
groups ([19]) then shows that one is actually reduced to the strongly minimal case.

One is led (for this question and for others) to study the structure of strongly
minimal sets. This can be divided into a number of aspects.

(1) The possible geometries associated to (strongly) minimal sets.
(2) For strongly minimal sets with nontrivial geometry, the structure of defin-

able groups and definable group actions.
(3) For (strongly) minimal sets with trivial geometry:

a) Are there finitely or infinitely many algebraic points? What is the
Galois group?

b) Are there finitely or infinitely many algebraic correspondences between
two such strongly minimal sets? In particular, between a strongly min-
imal set and itself? If finitely many, can they be bounded uniformly?

(4) Families of strongly minimal sets. To what extent do the above properties
vary uniformly in families?

The possible geometries (1) were fully classified in [9]. Using these results, in
his study of (2) in [19], Pillay showed that in a superstable differential field, every
strongly minimal set with nontrivial geometry must have a solution in K.

In a differential field with quantifier elimination, types correspond to (certain)
differential ideals; since these ideals satisfy a chain condition, every theory of differ-
ential fields with quantifier elimination is ω-stable, and in particular superstable.
Thus the result of [19] is applicable to such differential fields.

The remaining question is whether all strongly minimal types with a trivial
geometry must be realized in a saturated model of the theory. It was conjectured
in [19], correctly, that the answer is no.

Two structural properties of trivial strongly minimal sets are implicated in this
question. First, (3a) a strongly minimal structure with trivial geometry can, in
principle, have infinitely many algebraic points. Among those defined in differential
algebra - taken with their induced structure over a canonical base of definition -
no such strongly minimal sets are known. However, if D is a strongly minimal set
defined in a model of DCF0, over an algebraically closed differential field K, and
D has infinitely many algebraic points in its induced structure, then D will have
(infinitely many) solutions in K.

Second, one must consider definable families of strongly minimal sets (4). In any
theory of differential fields admitting elimination of quantifiers, given any definable
family of definable sets (with strongly minimal generic element), the set of those
that have a point must be definable (by a quantifier-free formula). In addition, there
must be some non-orthogonality invariance. Given two non-orthogonal strongly
minimal sets over K, with trivial geometry, if one has infinitely many solutions in
K, so will the other.

To summarize, (1) and (2) are fairly well understood in general. (3) was solved
in [7] for strongly minimal sets of order 1. The current paper clears up (4) for order
1 sets (and for some others.) Putting together these structural results permits the
construction of many theories of differential fields.

Orthogonality and definable families. Most of our results will concern first-
order differential equations over the constants. On an elementary level, such an
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equation can be written: f(Dx, x) = 0, where f(y, x) is an ordinary field polyno-
mial. The order of the equation is then said to be 1, and the degree is the degree of
f in the Dx variable. This notion of degree depends on the choice of the variable
x; it will not explicitly show up in our work. A more intrinsic invariant is the genus
of the function field, generated by x,Dx, ... over the field of constants k. This is
the function field of a complete nonsingular curve C; the equation can be rewritten
in a less elementary but more canonical and informative fashion with the aid of a
variable ranging over C.

We show in §2 that when the genus of C is 1 or more, orthogonality to the
strongly minimal set defined by such a differential equation is always a definable
property. It is curious that although our subject matter consists entirely of strongly
minimal sets with trivial geometries, the proof uses the Manin maps on Abelian
varieties.

Strictly minimal sets on curves. In order to apply the results of §2, we need to
construct strictly minimal sets living on curves of higher genus. We point out an
easy, but pleasing and quite useful, correspondence between strictly minimal sets of
order 1, over the constants, and curves with 1-forms on them. To each curve over
k and 1-form on it, we associate a strongly minimal set. A rational map between
curves and 1-forms gives rise to a definable map of strongly minimal sets. We show,
in a strong form, that, conversely, every Kolchin-closed definable map between such
strongly minimal sets arises in this way. In particular, strict minimality corresponds
to a definite property of the 1-forms. In genus > 1, strict minimality implies trivial
geometry. Non-orthogonality then corresponds to isomorphism of the corresponding
geometric structures (curve and 1-form). A reasonably complete picture of order 1
strongly minimal sets over the constants is achieved.

Thanks to Zoé Chatzidakis, Dave Marker, Wai Yang Pong, Thomas Scanlon,
Carol Wood, and the referee for remarks improving this paper.

1. Differential and algebraic varieties

This section is devoted to setting up the framework, and recalling and system-
atizing observations from [9].
k will denote the field of constants in a universal domain for differential fields

of characteristic 0. k0 will be an algebraically closed subfield of k, and K will be
a differential field extension of k0. When we consider differential equations with
constant coefficients, we are thinking of k as a base set rather than a definable
set. It is probably necessary to have two distinct notations for these two aspects
of the constants; for instance, if p is a strongly minimal set, the orthogonality of
p to the set of constants (in the sense of Shelah) is a stronger condition than the
orthogonality of p to the definable set Dx = 0. In this paper, the first condition
will never be considered. We will mostly use the notation k when we think of it as
a definable set.

A subset X of an algebraic variety V over the universal domain is called Zariski-
closed (respectively Kolchin-closed) if it is (locally, on each piece of an affine chart)
defined by the vanishing of polynomials (respectively, differential polynomials). X is
called irreducible if it is not the union of two proper Zariski- (respectively, Kolchin-)
closed sets. (A theorem of Kolchin states that a Zariski-irreducible Zariski-closed
set is also Kolchin-irreducible.) If X is an irreducible Kolchin-closed set of finite
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4270 E. HRUSHOVSKI AND M. ITAI

differential order, defined over K, let K(X) be the field of differential rational
functions on X . Thus K(X) = K(a,Da, ...) if a is a generic point of X . The
differential order of X is defined to be the transcendence degree of K(X) over K.
If this order is finite, then K(X) is a finitely generated field extension of K; it is
then the function field of a K-variety V , of dimension equal to the order of X ; we
then say that X lives on V .

Observe that if we blow up a point of V \X , then X also lives on the blow-up;
thus V is determined by X only up to birational changes.

If X lives on V , then for generic a ∈ X , Da belongs to the function field K(V ) of
V ; i.e., Da = s(a) for a rational function s on V . Thus if we are willing to remove
a proper Zariski-closed subset of V (where s is not defined) and a proper Kolchin-
closed subset of X (where the equality Dx = s(x) fails), we obtain a representation
of the form

X = Ξ(V, s) =def {v ∈ V : Dv = s(v)}.

We can take V to be a smooth variety, and s regular.
We will see in a moment that once X is given, V and s are determined up to

birational isomorphism, and s is determined as a rational function on V ; the target
variety of s will be described later. Thus we may write χ(X) = (V, s). We will
see below that χ is a functor on Kolchin closed sets of finite order, yielding a close
relation between them and algebraic varieties with vector fields.

The shifted tangent bundle. First, however, let us describe the target of s;
compare [3], [2], [9]. Let (K,D) be a differential field, and V a variety over K (pos-
sibly reducible; it may be assumed K-irreducible.) Consider subvarieties V of affine
space An. Let TDV be the smallest Zariski-closed subvariety of A2n containing each
point (a1, . . . , an, Da1, . . . , Dan), where (a1, . . . , an) ∈ V (L), L some differential
field extending K.

Thus by definition, the derivation D of a differential field extension L of K
induces a map V (L)→ TDV (L); this map will also be denoted D.

(When V is smooth, defined by an ideal I, TDV is the zero locus of I∪{
∑ ∂f

∂xi
yi+

Df : f ∈ I}. Here Df denotes the polynomial obtained from f by differentiating
the coefficients. The smooth case is the only one we will require.) Further, let
πV : TDV → V be the obvious projection. Then it is easy to see that (TD(V ), πV )
is functorial (so that we have TD(f) : TD(V ) → T (V ′) associated to a morphism
f : V → V ′) and that (#)

TD(U) = π−1
V (U) ⊂ TD(X)(#)

when U is an open subset of X . We have, for any a ∈ V , (a,Da) ∈ TDV .
Conversely, if a ∈ V is generic over K, and b ∈ πV

−1(a), then there exists a
derivation D′ of K(a) extending D, with D′(a) = b. (Observe, directly from
the definition, that if V = V1 ∪ V2, a union of two proper closed subsets, then
TDV = TDV1 ∪ TDV2. If a ∈ V is generic over K, then a ∈ V1 \ V2 (or a ∈ V2 \ V1),
and so π−1

V (a) ⊂ π−1
V (V \ V2) ⊂ TDV1. This reduces the previous statement

to the irreducible case. In this case we define a derivation K[a] → K[a, b] by
f(a) 7→

∑ ∂f
∂xi

bi +Df(a), and verify trivially that it is a derivation extending D.)
Using (#), one glues to get a functor on arbitrary varieties, with the same

properties.
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Proposition 1.1. Let V be a variety, s a regular section V → TDV . Let X =
Ξ(V, s) = {v ∈ V : Dv = s(v)}.

(1) X is Zariski-dense in V .
(2) Any Kolchin-closed X ′ ⊂ X must have the form

X ′ = V ′ ∩X = Ξ(V ′, s|V ′) = {v ∈ V ′ : Dv = s(v)}

with V ′ a Zariski-closed subset of V .
(3) If V is Zariski-irreducible, then X is Kolchin-irreducible.
(4) A Zariski-closed subset V ′ of V is called s-integral if X∩V ′ is Zariski-dense

in V ′; equivalently iff s(V ′) ⊂ TD(V ′). If V ′,V ′′ are X-integral, then so is
V ′ ∩ V ′′.

(5) If V is smooth, or more generally if the dimension theorem holds in V , then
it holds for X: whenever X ′, X ′′ are Kolchin-closed, irreducible subsets of
X, and ∅ 6= W a component of X ′ ∩X ′′,

ord(W ) ≥ ord(X ′) + ord(X ′′)− ord(X).

Proof. (1) Let L be a model of DCF0. Let a be a generic point of V , over L. s
is a section, so s(a) ∈ π−1

V (a). Define a derivation of the field extension L(a) of
L, extending the given derivation of L, and with Da = s(a). Let V ′ be a proper
subvariety of V , defined over L. Then in L(a), a ∈ X \ V ′. Since L is existentially
complete, X \ V ′ 6= ∅ in L.

(2) X ′ is defined by the vanishing of some differential polynomials H(x,Dx, ...).
Replacing Dx by s(x) in these, we obtain regular algebraic functions H ′(x) =
H(x, s(x), ...); and H,H ′ agree on X . Let V ′ be the Zariski-closed subset of V
defined by the vanishing of the H ′. Then X ′ = X ∩ V ′.

(3) If X = X1 ∪X2, with Xi Kolchin-closed, we have by (2) Xi = X ∩ Vi, with
Vi Zariski-closed; by (1), V1 ∪ V2 = V ; by irreducibility, some Vi = V , so Xi = X .

(4) This reduces to the case when V is affine. There it is equivalent to a classical
lemma of Kolchin’s ([11]), to the effect that the prime components of a differential
ideal are also differential ideals.

(5) By (2), (4) we have X ′ = V ′ ∩X , X ′′ = V ′′ ∩X ; and ord(X ′) = dim(V ′),
ord(X ′′) = dim(V ′′), ord(X) = dim(V ). If V1, ..., Vm are the components of V ′∩V ′′,
letting Wi = Vi ∩X , we have V ′ ∩V ′′ =

⋃
Wi. Thus W = Wi for some i. It follows

that ord(W ) = dim(Vi) ≥ dim(V ′) + dim(V ′′)− dim(V ). �

Fix a “universal domain” U; it is a model of DCF0. Varieties and Kolchin-closed
sets are taken to be over U.

If K is a differential subfield of U, let CKol(K) be the category of Kolchin-closed
sets V defined over K of finite differential order, up to subsets of smaller order;
thus in C1 V and V \ V ′ are identified if ord(V ′) < ord(V ). A morphism V → U
is a differential regular map g : (V \ V ′)→ U , defined over K, for some V ′ ⊂ V of
smaller order than V . CKol(U) is denoted simply CKol.

Let CZ be the category of pairs (V, s), V an algebraic variety, s : V → TDV a
regular section, up to subsets of smaller dimension: (V, s) is identified with U, s|U
if U is a dense open subset of V . A morphism (V, s) → (U, t) is a regular map
h : (V \V ′)→ U such that t ◦ h = TD(h) ◦ s, for some V ′ ⊂ V of smaller dimension
than V . CZ(K) is the subcategory whose objects and morphisms are to be defined
over K.
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Remark 1.1. Let CKol# be the finer category of Kolchin-closed sets of finite differ-
ential order, and differential regular maps between them. Thus CKol is a quotient of
CKol#. An object (map) of CKol is said to be generically-irreducible (respectively,
dominant) if it is represented by an irreducible object (respectively, by a surjective
map) of CKol#. Thus X is generically irreducible iff it has a unique component of
maximal dimension, or iff it has a unique type of elements of maximal order.

The questions of orthogonality studied in this paper relate to CKol, rather than
to CKol#. Most references to Kolchin-irreducibility below could equally well be
replaced by generic irreducibility, and the difficulties associated to Kolchin-irreduci-
bility are irrelevant. Nevertheless we give a brief discussion of these issues in §3.1.

Proposition 1.2. The functor Ξ induces an equivalence of categories CKol → CZ ,
with inverse χ. The equivalence translates differential order to dimension, respects
fields of definition, and is compatible with “image” and “generic fiber”: f : X1 →
X2 is dominant iff χ(f) is, and in this case, if Y is a generic fiber of f , then χ(Y )
is a generic fiber of χ(f).

In particular, if 1 ≤ m ∈ N and f is generically m-to-1, then so is χ(f).

Proof. Fix a differential field K ⊂ U; let us show the equivalence between the
objects and morphisms of CKol(K), CZ(K).

First we describe Ξ. Given an object (V, s) of CZ(K), let Ξ(V, s) =def {v ∈ V :
Dv = s(v)}. It was shown in 1.1 that the order of Ξ(V, s) equals the dimension of
V . In particular, if V ′ is a subvariety of V of smaller dimension, U = V \ V ′, then
Ξ(V, s) \ Ξ(U, s) has smaller order than Ξ(V, s); so Ξ is well-defined on the objects
of CZ , into those of CKol.

Now if f : (V, s)→ (U, t) is a morphism in CZ(K), define Ξ(f) = f |Ξ(V, s).
With the intervention of the category of finitely generated K-algebras, endowed

with a derivation extending the derivation DK of K, we showed above that every
object of CKol(K) is in the image of Ξ(CZ(K)); and similarly so is every morphism.

It remains to show that Ξ(f) is an isomorphism in CKol iff f is an isomorphism
in CZ . Note that f is an isomorphism in these categories iff f is dominant, and
generically 1-1. Thus it suffices to prove the statement concerning preservation of
dominance, and of generic fibers.

Let f : (V, s) → (U, t). Assume f : V → U is dominant. Let a ∈ Ξ(U, t)
be a generic point over K. Let Va = f−1(a). Then Va is a nonempty K(a)-
variety. Moreover, TD(f) : TD(V ) → TD(U), (a,Da) ∈ TD(U), and TD(Va) =
TD(f)−1(a,Da). From t ◦ f = TD(f) ◦ s it follows that sa = s|Va is a section of
TD(Va). Thus by 1.1, Ξ(Va, sa) is Zariski-dense in Va. In particular, it is non-empty;
this shows that Ξ(f) is dominant. Moreover, a is a generic point of U ; so Va is a
generic fiber of f ; this proves the preservation of generic fibers. In particular, since
Ξ(Va, sa) is Zariski-dense in Va, Va is finite iff Ξ(Va, sa) is finite, and in this case
they are equal. �

See [21] for the notion of elimination of imaginaries, and the proof that it holds
in the theory DCF0 of differential fields of characteristic 0 (Theorem 7 there).
Actually we only require codes for finite sets given by symmetric functions in any
field.

Lemma 1.2. Let X be an irreducible Kolchin-closed set living on a variety V . Let
E be a definable equivalence relation on X with finite classes. Then there exist a
variety U , a rational map f : V → U and a Kolchin-closed Y living on U , such
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that, for all a ∈ X outside a proper Kolchin-closed subset, f(a) ∈ Y and f−1(f(a))
is the E-class of a. If L0 is a differential field over which X,E (and V ) are defined,
one may take Y, U, f defined over L0.

Proof. Using elimination of imaginaries in DCF, let f0 : X → Y be a definable
map whose fibers are the classes of E. Removing a Zariski-closed proper subset
of X , we may assume Y is a Kolchin-closed irreducible set, and f0 is a dominant
regular differential rational map. Y lives on a variety U , and by Proposition 1.2 f0

is induced from a unique f : V → U . Say f−1
0 (b) has m points for generic b ∈ Y ;

then by 1.2, f−1(u) has m points for generic u ∈ U ; removing a proper Zariski-
closed subset of U (that necessarily intersects Y in a proper Kolchin-closed subset
of Y , since Y is Zariski-dense in U), we may assume f−1(u) has at most m points
for any u ∈ U . It follows that f−1(b) = f−1

0 (b) for generic b ∈ Y , as promised. It
is clear that Y, f0 may be taken defined over L0; by functoriality so are U, f . �
Remark 1.3. We will mostly work in this paper with Kolchin-closed sets defined
over k0 ⊂ k. In this case TDV = TV is the tangent bundle (for smooth V defined
over k0).

2. Strictly minimal sets on curves

We study non-orthogonality classes of degree one strongly minimal sets, defined
over the constants. In genus ≥ 2, we show that such classes are in 1-1 correspon-
dence with pairs (C, ω), C a curve of genus ≥ 2 defined over k, ω a rational 1-form
on C, defined over k, that is not the pullback of any other 1-form on a curve of
smaller genus.

Using this geometric representation of non-orthogonality classes, we will con-
struct a class of strongly minimal sets, with trivial induced structure, living on
curves of genus ≥ 2 over the constants.

In §§2.1 and 2.2, we use similar methods to study strongly minimal sets living
on P1 or on elliptic curves.

Strongly minimal sets defined over generic parameters can be analyzed by very
similar methods; but the situation over non-generic parameters remains to be de-
scribed. Generalizations to higher dimensions also remain open and of great inter-
est.

Algebraic curves. The material on curves that we will require can be found in
the first chapter of Hartshorne’s book [5], or in any basic text, e.g. [15]. We briefly
summarize it. Our curves will be nonsingular and complete; they will be defined
over an algebraically closed field (of characteristic 0). A rational morphism between
such curves is automatically regular (cf. the corollary to Theorem VI.1.1 in [15]).
Associated to a curve C is the space of rational 1-forms on C, i.e., rational maps ω
on C such that ω(c) is an element of the dual to the tangent space TcC to C at c.
If 0 6= ω is one such form, then any other equals fω for some rational function f
on C. If ω is nonzero, it will have a finite number z of zeroes and a finite number
p of poles, and z − p = 2g − 2, where g is a number depending on C alone, called
the genus of the curve. If c is a simple pole of ω, then the residue of ω at c is
well-defined; the sum of residues is 0. Forms with no poles are called global. The
set of global 1-forms on C forms a vector space of dimension g, denoted Ω1(C). (If
C is defined over L, then the global 1-forms defined over L form a g-dimensional
L-space.) The only curve of genus 0 is the projective line. On it there are no global
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1-forms, since 2g − 2 = −2 < 0. Curves C of genus g ≥ 1, with a distinguished
point 0, admit an embedding into an algebraic group J of dimension g ≥ 1, the
Jacobian; it is an isomorphism iff the genus is 1. For any element T of (T0J)∗ there
exists a translation-invariant 1-form ω with ω(0) = T ; if T 6= 0 then this ω has no
zeroes or poles; it restricts to a global 1-form on C, and all global 1-forms on C are
obtained in this way, as one can check by comparing dimensions.

In this section, C will denote a smooth curve defined over a field K. K(C)
denotes the field of rational functions on C defined over K. There is a 1-1 corre-
spdence between non-zero 1-forms ω, and non-zero vector fields t on C, given by
the relation ω(p)t(p) = 1 for almost all p. This relates the 1-forms used here to
the vector fields of the previous section. We will work with curves defined over the
constants, so the shifted bundle will not arise.

The pullback of a 1-form ω by a regular map f : C → C′ is defined as f∗ω = ω◦df ,
where ω is viewed as a map on TC′, and df : TC → TC′.

Let C be a nonsingular curve, defined over a field k0 contained in the constants.
If ω is a nonzero rational 1-form on C, i.e. a rational section of the cotangent bundle,
let

Ξ(C, ω) = Ξ(C′, t),

where Z is the finite set of zeroes of ω, C′ = C \ Z, and t is the vector field on C′

satisfying tω = 1. In other words, Ξ(C, ω) = {a ∈ C : ω(a)Da = 1}, and this is
taken to include a pole a of ω iff Da = 0.

Note that Ξ(C, ω) is Kolchin-closed: the equations Dx = t(x) and ω(x)Dx = 1
define Ξ(C, ω) away from the zeroes (respectively, the poles) of ω; between them
they show that C is closed near every point, hence closed. Moreover since Ξ(C, ω) ⊂
C′, by 1.1, Ξ(C, ω) is Kolchin-irreducible.

(Therefore the treatment of zeroes and poles is forced by the requirement that
Ξ(C, ω) be closed and irreducible.)

Moreover, by 1.1, all infinite definable subsets of Ξ(C′, t) have the form Ξ(C′, s)∩
C ′′ for a constructible C′′ ⊂ C′; since C is a curve, C′′ is finite or cofinite, so Ξ(C, s)
is strongly minimal.

Remark 2.1. Observe that if ω is defined over k, the finitely many poles of ω are
also defined over k; hence Da = 0 automatically at the poles. Thus the points of
Ξ(C, ω) algebraic over the base of definition are precisely the poles of ω.

Remark 2.2. Beyond dimension 1, 1-forms and vector fields play different roles;
over the constants, 1-forms are associated with definable sets of co-order 1 (cf. [7]).
They present an advantage if one is interested in strongly minimal sets defined
over generic parameters. Here our choice of 1-form over vector field notation is
somewhat arbitrary.

Lemma 2.3. Let Y be any strongly minimal set, defined over the constants, living
on C. Then, up to a finite set, either Y = C(k) (so Y is defined by Dx = 0) or
Y = Ξ(C, s) for some rational 1-form s defined over the constants.

Proof. Since Y lives on C, in local coordinates on a Zariski-open affine, Dy = h(y)
for y ∈ Y , where h is a rational section of the tangent bundle of C. If h 6= 0, then
we can define a 1-form s by s(y)h(y) = 1. Then Ξ(C, s) coincides with Y , up to a
finite set. �
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A strongly minimal set Ξ(C, ω), with ω ∈ Ω1(C), will be called global. Note that
they form a definable family of strongly minimal sets.

A 1-form s on C will be called essential if there is no rational map g : C → C′

of degree d > 1, and a rational 1-form s′ on C′, with s = g∗s′.
It will be shown later that in genus ≥ 2, generic global 1-forms are essential.

(Ω1(C) has a basis s1, ..., sγ of global 1-forms defined over k0. Let t = (t1, ..., tγ)
be a generic (over k0) γ-tuple of constants, and let s =

∑
tisi. This is a generic

element of Ω1(C) (defined over k1 = k0(t)).)

Proposition 2.1. Let C be a complete nonsingular curve over k, of genus γ > 1.
Let s be an essential global 1-form on C, defined over k. Then Ξ(C, s) is strictly
minimal, with trivial induced structure.

Two such sets Ξ(C1, s1), Ξ(C2, s2) are not orthogonal if and only if there exists
an isomorphism g : C1 → C2 with s1 = g∗s2.

We insert some lemmas prior to the proof of the proposition. The curves occuring
in the proposition and the lemmas are assumed to be defined over k; the 1-forms
and rational maps, not always.

Lemma 2.4. Let g : C1 → C2 be a dominant regular map between nonsingular
curves, and s2 a 1-form on C2, all defined over k. Let s1 = g∗s2 be the pullback by
g to C1. Then g−1Ξ(C2, s2) = Ξ(C1, s1).

Proof. Let c1 ∈ C1, c2 = g(c1). Then

s1(c1)Dc1 = s2(c2)(dg)(Dc1) = s2(c2)D(g(c1)) = s2(c2)Dc2.

Thus s1(c1)Dc1 = 1 iff s2(c2)Dc2 = 1. �

Lemma 2.5. Let g ∈ k(C) \ k. Let s be a 1-form on C. Then g(Ξ(C, s)) \ k is
infinite.

Proof. We may write dg = hs for some rational function h on C. g, s, h are regular
on a cofinite C′ ⊂ C. If h = 0 then g is constant, g ∈ k. Otherwise, for c ∈ Ξ(C′, s),
Dg(c) = (dg)cDc = h(c)s(c)Dc = h(c). Thus if gΞ(C, s) is almost contained in the
constants, then h vanishes on Ξ(C′, s); hence h = 0. �

It follows from these lemmas that the image under a rational map of Ξ(C1, s1),
if it lives on a curve C2, must (a.e.) have the form Ξ(C2, s2) for some 1-form s2.

Lemma 2.6. If Ξ(C, s) and Ξ(C, s′) have infinite intersection, then s = s′.

Proof. C(k), Ξ(C, s), and Ξ(C, s′) are all strongly minimal. By Lemma 2.5, Ξ(C, s)∩
C(k) is finite. So Dc 6= 0 for c ∈ Ξ(C, s)∪Ξ(C, s′) (excepting perhaps finitely many
points). Thus for infinitely many points c in the intersection Ξ(C, s) ∩ Ξ(C, s′) we
have s(c)Dc = 1 = s′(c)Dc, and Dc 6= 0. Thus s(c) = s′(c) for infinitely many c,
so s = s′. �

Lemma 2.7. Let g : C1 → C2 be a dominant rational map between nonsingular
curves, all defined over k. Let si be a 1-form on Ci. Assume gΞ(C1, s1) ⊂ Ξ(C2, s2)
(perhaps up to a finite set). Then s1 = g∗s2.

Proof. By Lemma 2.4, g−1Ξ(C2, s2) = Ξ(C1, g
∗s2) (a.e.). Thus the intersection of

Ξ(C1, s1) with Ξ(C1, g
∗s2) is infinite. By 2.6, s1 = g∗s2. �
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Lemma 2.8. Let C be a complete nonsingular curve, s a global 1-form on C, both
defined over k. Then there is no rational function g ∈ k(C) such that gΞ(C, s) lives
on P1.

More generally, if g : C → C′ is a rational function into a complete nonsingular
curve, and gΞ(C, s) = Ξ(C′, s′), then s′ is a global 1-form on C′.

(The referee kindly provided a reference: I.R. Shafarevich, Basic Alebraic Ge-
ometry, 2nd ed., Springer-Verlag, Berlin-Heidelberg 1994, Theorem 6.1.2.)

Proof. As C is nonsingular and C′ is complete, g : C → C′ is a morphism; it is
surjective since C is complete.

By 2.7, s = g∗s′ = (dg) ◦ (s′ ◦ g). We will show that if s is regular at p ∈ C,
then s′ is regular at p′ = g(p) ∈ C′. Trivialize the tangent bundles of C and of C′

near p and p′, and let t, t′ be rational functions on C,C′, viewed as sections of the
trivialized bundles, such that st = 1, s′t′ = 1. We have to show that if t′(p′) = 0,
then t(p) = 0. Now

g′(x) · t(x) = (t′(g(x)).

Choosing a parameter for C at p, we see that if g′ vanishes to order m at p, then
g(p) = p′ to order m+1; since t′ vanishes to some order k ≥ 1 at p′, t′(g(x)) vanishes
to order (m+ 1)k > m at x = p; so t(x) must vanish to order (m+ 1)k −m > 0.

In the case of P1, all nonzero rational 1-forms have at least 2 poles (poles −
zeroes = 2g − 2), so the first assertion follows. �
Lemma 2.9. Let s be an essential rational 1-form on C defined over k. Let E be a
definable equivalence relation on Ξ(C, s), defined over k, with finite classes. Then
almost every class of E has one element.

Proof. Suppose otherwise. By Lemma 1.2, there exist C′ and g : C → C′ with
deg(g) > 1 such that g(Ξ(C, s)) lives on C′. So (up to a finite set) gΞ(C, s) =
Ξ(C′, s′) for some rational 1-form s′ on C′. By 2.7 , s = g∗s′. But this contradicts
the assumption that s is essential. �
Lemma 2.10. Let s be a 1-form on a curve C, defined over k. Assume s is not
the pullback of a form on P1 (the form and the rational function both defined over
k). Then Ξ(C, s) is non-orthogonal to the constants iff there exist an elliptic curve
E, a rational function g : C → E, and an invariant 1-form ω on E, all defined
over k, such that s = g∗ω.

Proof. In one direction, if s = g∗ω, then gΞ(C, s) = Ξ(E,ω). If e ∈ E(k), then
translation by e leaves ω invariant, hence leaves Ξ(E,ω) invariant. Thus Ξ(E,ω)
is a coset of E(k), so this set is non-orthogonal to the constants.

Assume conversely that Ξ(C, s) is non-orthogonal to the constants. First suppose
Ξ(C, s) is not almost-orthogonal to k. Then there exists c ∈ k, c /∈ acl(k0)(= k0),
c ∈ acl(k0(a)) for some a ∈ Ξ(C, s). The set of conjugates of c over k0(a) is a
finite subset of k; by elimination of imaginaries, it is coded by a tuple (t1, ..., tm) of
elements of k; each ti is definable over k0(a), and some ti must be transcendental
over k0. Thus there exists a nonconstant f ∈ k(C) with fΞ(C, s) ⊂ k (a.e.).
However, this contradicts 2.5.

Next, suppose Ξ(C, s) is almost orthogonal, but not orthogonal, to k. We will
use the basic results on almost-orthogonality (cf. [8], or the section on the binding
group on [20]). There exists an equivalence relation ∼ on Ξ(C, s) with finite classes,

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ON MODEL COMPLETE DIFFERENTIAL FIELDS 4277

definable over k0, such that Ξ(C, s)/ ∼ is k-internal; there exist a set P differing
from Ξ(C, s)/ ∼ by a finite set, and a definable transitive action of a connected
definable group G on P . G is k-internal. We could use here the general theory
of definable groups to pass to an algebraic group action, but instead, since we are
dealing with curves, we can obtain the required information by just looking at single
elements of G. By 1.2, ∼ is the kernel of a rational function g : C → E (E a curve
over k0). By 2.6, gΞ(C, s) = Ξ(E,ω) for some ω; and s = g∗ω. Thus we have a
definable transitive action of G on a set P ′ differing from Ξ(E,ω) by a finite set.
By 1.2, each element of g yields a birational map E → E; since E is a complete
nonsingular curve, such a map corresponds to a unique biregular map E → E. By
[5], IV, Ex. 5.2, having infinitely many automorphisms, E cannot have genus > 1;
so E has genus 1. By [5], Cor. 4.7, the group of translations of E has finite index
in the group of all automorphisms of E; so infinitely many elements of G must act
on E by translations. For g ∈ G we have gΞ(C, ω)) = Ξ(C, ω)) (up to a finite set),
so ω = g∗ω. Thus ω is invariant under infinitely many elements of the translation
group, and hence by strong minimality of E under all translations. �

Remark 2.11 (See also §2.2 below). It is possible to delete the hypothesis that s is
not a 1-form on P1, and change the conclusion to: s is the pullback of an invariant
1-form on an elliptic curve, or Ga, or Gm. This follows from the above together
with [17], 6.12. It should be possible to give another proof along the above lines.

Proof of Proposition 2.1. By Remark 2.1, Ξ(C, s) has no algebraic points.
By 2.9, every definable equivalence relation on Ξ(C, s) with finite classes has

infinitely many 1-element classes; since any exceptional classes would consist of
algebraic points, all classes must have a single element.

Note that Ξ(C, s) is orthogonal to the constants k. Otherwise, by 2.10, there
exists a rational function g : C → C′, C′ either of genus 0, or a 1-dimensional
algebraic group, over k with an invariant 1-form ω on C′, and s = g∗ω. Since s is
essential, g must have degree 1. But C′ has genus 0 or 1, while C is assumed to
have genus > 1, a contradiction.

By [7], Ξ(C, S) has ℵ0-categorical induced structure, and trivial geometry.
It follows that acl(a) = {a} for a ∈ Ξ(C, s). Indeed by ℵ0-categoricity, the

equivalence relation acl(x) = acl(y) is definable, and has finite classes, so 2.9 applies,
contradicting essentialness.

By the triviality of the geometry, acl(a1, ..., an) = {a1, ..., an} for all a1, ..., an ∈
Ξ(C, s). By strong minimality, Ξ(C, s) has no induced structure at all.

As for the orthogonality, assume Ξ(C, s), Ξ(C′, s′) are not orthogonal. Then
by triviality of the geometry they are not almost orthogonal, so there exists a k-
definable finite-finite correspondence between them; by triviality of the algebraic
closure of each, this correspondence is a bijection; so there exists a rational g : C →
C′ with s = g∗s′ defined over k. As above, g must be birational, and therefore an
isomorphism. �

Remark 2.12. The following purely geometric statement follows from Proposition
2.1: if C is a complete nonsingular curve of genus ≥ 2, ω an essential 1-form on C,
and C′ is any other curve, with a rational 1-form ω′, then there exists at most one
rational map g : C′ → C with g∗ω = ω′.

Conversely, this geometric fact, applied to the normalization of a correspondence
on C, implies that there are no nontrivial correspondences onX(C, ω), and therefore
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X(C, ω) is strictly minimal. A direct geometric proof would thus circumvent the
need to quote [7] in the proof of Proposition 2.1.

Existence of essential 1-forms.

Lemma 2.13. Let C be a complete nonsingular curve over k0, of genus > 1. There
exists a finite or countable union E =

⋃
l Sl of proper subspaces of Ω1(C), such that

any 1-form in Ω1(C) \ E is essential.
There exists an essential global 1-form, defined over k0.

Proof. Let J be the Jacobian of C, and let ι : C → J be an embedding. The global
1-forms of C are precisely the pullbacks of invariant 1-forms on J .

Claim 2.14. Assume the global 1-form s on C is not essential. Then there exist an
Abelian variety J ′ with dim(J ′) < dim(J), a homomorphism f : J → J ′ of Abelian
varieties, and ω ∈ Ω1(J ′), with s = (fι)∗ω.

Proof of Claim. Since s is inessential, s = g∗s′ for some g : C → C′ with deg(g) > 1.
Let ι′ : C′ → J ′ be the Jacobian of C′. The dimension of J ′ is the genus of C′; it is
smaller than that of C by the Hurwitz genus formula. Let f : J → J ′ be the map
induced by g, so ι′g = fι. Then s′ = ι′

∗
ω for some ω; and s = (ι′g)∗ω = (fι)∗ω. �

Given an Abelian subvariety K of J , let πK : J → (J/K) be the canonical map.
Let VK be the subspace of Ω1(J):

VK = {πK∗ω : ω ∈ Ω1(J/K)} = {s ∈ Ω1(J) : s|K = 0}.

Note that VK is a subspace of Ω1(J) of dimension dim(J/K); if K is infinite, then
VK is a proper subspace.

By the claim, every inessential 1-form is contained in VK for some infinite K.
There are only countably many Abelian subvarieties K of J . This proves that the
inessential global forms are contained in a countable union of proper subspaces.

Note also that VK ⊂ VK′ if K ′ ⊂ K. Thus every inessential 1-form is contained
in VK for some minimal proper subvariety K of J .

For the last statement, say C is defined over a finitely generated field L ⊂ k0.
All connected Abelian subvarieties of J are defined over a fixed finite extension of
L, obtained by adding some torsion points (cf. [6]; the statement is well-known to
algebraic geometers but we do not know a reference). We may thus assume they are
all defined over L. Thus also all VK are defined over L. But for any γ -dimensional
vector space V defined over L, and any extension field L′ of L with [L′ : L] > γ ,
V (L′) has a point avoiding all proper L-definable subspaces. �

(This last point can be sharpened, using Remark 2.15 below.)

Remark 2.15. As a rule, E is a finite union of proper subspaces. The exception
occurs when the Jacobian J of C is isogenous to a direct power Eγ of an elliptic
curve E, γ ≥ 2. In this case, and in this case only, E is a countably infinite union
of proper subspaces.

In the exceptional case, E is the union of all codimension 1 subspaces of Ω1(E),
whose corresponding point, in appropriate projective coordinates, is rational over
the field of fractions of the ring of endomorphisms of E (the complex multiplication
field of E).
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Remark 2.16. Any instance of the exceptional case in 2.15 provides an example of
a family of strongly minimal sets {Ξ(C, s) : s ∈ Ω1(C)}, whose generic member is
strictly minimal, orthogonal to k, and lives on a high genus curve; but a Kolchin-
dense collection of special members are non-orthogonal to the constants. We will
show in §3 how to construct a superstable differential field in which some generic
element of this family can have no points. For exceptional families of this type, this
cannot be improved to say that no generic element of the family has points (since,
taking into account [19], in any superstable differential field, the strongly minimal
sets non-orthogonal to k must have infinitely many points).

Proof of Remark 2.15. We use here classical theorems of Severi and de Franchis;
cf. [28], though a more elementary proof ought to be possible.

Consider rational maps g : C → C′ of degree > 1, defined over k. Given the
pair (g, C), the family of pullbacks via g of forms in Ω1(C′) constitutes a proper
subspace V (g, C′) of Ω1(C) (using the Hurwitz formula again).

Over k, there are only countably many curves of genus 1 dominated by C (quo-
tient elliptic curves of the Jacobian of C), and finitely many of higher genus (theo-
rem of Severi). For each such C′, there are countably many possibilities for g; and
actually finitely many for genus > 1, by the theorem of de Franchis.

Thus a finite union of subspaces contained in E accounts for all C′ of genus > 1.
It remains to consider maps from C into elliptic curves.

Up to isogeny, only finitely many elliptic curves are homomorphic images of the
Jacobian J of C. Fix representatives (over k0) E1, ..., Er of these isogeny classes.
Let Ki be the intersection of the kernels of all homomorphisms J → Ei. Then Ki

is connected, and J/Ki is isogenous to a power of Ei.
If each Ki is nonzero, then in the notation of the proof of Lemma 2.13, VKi

contains V (g, E′) for each E′ in the isogeny class of Ei, and each g. Thus if each
VKi is a proper subspace of Ω1(C), we are done.

Otherwise, Ki = 0 for some i. It follows that we are in the exceptional case: J
is isogenous to a power of E = Ei. The details here are left to the reader. �
2.1. Strongly minimal sets on elliptic curves. Let C denote a complete non-
singular curve, defined over k0 ⊂ k.

Remark 2.17. When C has genus 1, the sets Ξ(C, s), s ∈ Ω1(C), are all non-
orthogonal to the constants. Given s1, ..., sl ∈ Ω1(C), one can ask when there exist
ai ∈ Ξ(C, si) with a1, ..., al algebraically dependent over k. The answer (a special
case of [12], easily retrievable here) is that s1, ..., sl should be linearly dependent
over the field L of complex multiplication of C (or over Q if C has no complex
multiplication).

By Remark 2.1, and the fact that Ξ(C, s) is non-orthogonal to the constants for
s a global 1-form on an elliptic curve C over k, the above-mentioned global strictly
minimal subsets of higher genus curves are the only order 1 Kolchin-closed subsets
of complete nonsingular curves, defined over k, with strictly no induced structure.
It seems worth noting that on elliptic curves, there do exist strongly minimal sets
whose induced structure reduces to a finite set of constants.

Lemma 2.18. Let E be an elliptic curve over k0. Let a1, ..., ar be distinct points
from E(k0), r > 0. Assume there are no integers mi (not all 0) with

∑
miai = 0

(elliptic addition). Also assume the cycle
∑
ai has trivial stabilizer, by the trans-

lation group of E. Let s be a 1-form whose polar cycle is
∑
ai.
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Then the induced structure on Ξ(E, s) consists only of constants for the points
ai.

Proof. First we establish the following fact.

Claim. For any g : E → P1 (defined over k) and any rational 1-form s′ on P1,
s 6= g∗s′.

Proof. Suppose s = g∗s′. So (s) = R + g∗(s′), where R is the ramification divisor
of g, effective of degree ≤ d− 1, (s) is the divisors of poles and zeroes of the 1-form
s on C, and g∗(s′) is the pullback via g of the divisor of zeroes and poles of s′.
(Cf. the proof of Hurwitz’ theorem in [5], or Lemma 6.20 in D.Mumford, Algebraic
Geometry I: Complex projective varieties, Springer- Verlag, 1995.) �

Let d = deg(g). s′ must have a pole at each bi = g(ai). If bi is a pole of
s′ of order 2 or more, then (counting with multiplicities) s must have at least
2 deg(g)− deg(R) ≥ d+ 1 poles at points g−1(bi); so at least one of them must be
double. Thus since s has no double poles, neither can s′ have double poles. But
any rational 1-form of P1 has two more poles than zeroes (the canonical divisor
has degree −2); so s′ has at least two poles. Two must be distinct, say b1 6=
b2. Now g−1(b1), g−1(b2) are linearly equivalent cycles on C (with nonnegative
integer coefficients; this by definition of linear equivalence). They are formed from
two disjoint subsets of points from among a1, ..., ar. This contradicts the linear
independence assumption on the points ai.

By 2.10, Ξ(E, s) is orthogonal to the constants, unless s is the pullback by a
rational map of a global form on an elliptic curve. But s cannot be such a pullback:
any rational map between elliptic curves is a translate of a group homomorphism,
and it would follow that s too has no poles, contradicting the assumption.

As in the higher genus case considered above, if Ξ(E, s) has any structure other
than constants, then s is the pullback of a rational form on a curve C′ by a rational
map g : C → C′, of degree > 1. Then C′ is an elliptic curve or P1. The latter case
was already eliminated. In the former case, g is a translate of a non-injective group
homomorphism, with finite kernel K, and

∑
ai must be invariant under translation

by K, a contradiction.
Thus Ξ(E, s) has no structure except perhaps for constants. These constants

must have coordinates from k, so their derivative is 0; it follows that s has a pole
at these points. �

Remark 2.19. By contrast, if the polar divisor of s is supported on one point only,
then Ξ(E, s) is non-orthogonal to the constants.

2.2. Strictly minimal sets living on P1. There are as many strongly mini-
mal sets on P1 as there are rational functions (since we can write the equation
Dx = f(x)); on the other hand, given a strongly minimal set X on P1, there are
as many strongly minimal sets on P1 non-orthogonal to it, as there are rational
functions. (Namely gX , g a rational or even algebraic function.) Nonetheless there
exist families of pairwise orthogonal strictly minimal sets on P1, of arbitrarily large
dimension.

Orthogonality to the constants. The following example is due to Tracey Mc-
Grail and Dave Marker. It shows 3.1 would be false for the strongly minimal set,
Dx = 0.
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Example 2.20. Let s(x) = (cx−1 + (x−1)−1)dx. Then Ξ(P1, s) is non-orthogonal
to k iff c is rational.

The proof uses Theorem 6.12 of [17]. In our language, the theorem states:

For ω a 1-form on P1, defined over k, Ξ(P1, ω) is non-orthogonal to k iff ω is
the pullback of dx or of cx−1dx (constant c) by a rational function g ∈ k(X).

Note that if we write ω = f(x)dx, the criterion is equivalently stated:

f is the derivative of a rational function, or a constant multiple of the logarithmic
derivative of a rational function.

Recall that the residue of a 1-form ω at a point p ∈ P1 can be defined as follows.
Let u be a local coordinate at p. Write ω(u) = f(u)du. Express f as a Laurent
series in u. Then the residue is the coefficient of u−1.

Note that the logarithmic derivative of a rational function has only simple poles,
and has rational integer residues at these poles. (It suffices to check this for
d log(x − a).) Conversely, if ω is a rational 1-form with this property, let g be
a rational function with a zero of order m wherever ω has a pole with residue m.
This is possible, since the sum of residues is 0. Write (d log g) = cω with c a rational
function. Then c can have no poles or zeroes, so it must be constant. Comparing
residues at some pole of ω, we see that c = 1. Arguing similarly for the ordinary
derivative, we can restate the criterion in a form easy to check in practice:

Ξ(P1, ω) is non-orthogonal to k iff either ω has no simple poles, or else all poles
of ω are simple, and their residues have rational ratios.

In particular, 2.20 follows.

A test for strict minimality. We would like to give tests for strict minimality
and for almost orthogonality of sets living on P1. We will use the following result
of Ax; cf. [1] or [17], Lemma 6.10.

Let k be algebraically closed, K an algebraically closed extension of k of tran-
scendence degree 1. Consider the logarithmic derivative as a map

K∗/k∗ →d log Ω1(K/k)/dK

Here the domain of the map is the multiplicative group of K , modulo the constants.
The range is the space of 1-forms, modulo exact forms.

Lemma 2.21 (Ax). If the group K∗/k∗ is viewed as a Q-space, then the induced
map

(K∗/k∗)⊗Qk → Ω1(K/k)/dK

is injective. In other words, if f1, ..., fm ∈ K∗ are multiplicatively independent
(modulo k∗), then their logarithmic derivatives are k-linearly independent over the
exact forms.

Here is an easy-to-apply test for almost-orthogonality among strongly minimal
sets living on P1. Recall that the sum of residues of a rational 1-form is 0; in
particular, a form cannot have a single nonzero residue.
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Lemma 2.22 (rational 1-forms on P1, defined over the constants). Let {ai}1≤i≤n,
{bj}1≤j≤n′ be the distinct simple poles of ω, ω′ respectively, and ci, ej the corre-
sponding residues. Assume n, n′ > 0 and that c1, . . . , cn−1, e1, . . . , en′−1 are lin-
early independent over Q. Let X = Ξ(P1, ω), X ′ = Ξ(P1, ω′). Then X and X ′ are
almost orthogonal.

Proof. After a linear fractional change of variable, we may assume ω, ω′ do not have
a pole at ∞. To motivate, we solve the equations formally for a function x = Ξ(t).
Write the equation for Ξ(P1, ω) as

ω(x)
dx

dt
= 1.

Inverting, we get

dt = ω(x)dx.

Now write ω(x) = r(x) +
∑
i ci(x− ai)−1, with the ai distinct, ci nonzero, and r a

rational function with no simple poles. By integrating the partial fraction expansion
of r term by term, we find a rational-function primitive R for r; absorbing the
constant of integration in R, we obtain

t = R(x) +
∑
i

ci log(x− ai).

Similarly, if y solves X ′, we can write

t = S(y) +
∑
j

ej log(y − bj).

Subtracting the equations, we obtain∑
ci log(x− ai)−

∑
ej log(y − bj) = S −R.

(We can think of x, y as analytic functions of t, defined locally, with essential
singularities at y = bj and x = ai. Alternatively we can work formally, and directly
reach the next equation:)∑

cid log(x− ai)−
∑

ejd log(y − bj) = d(S −R).

Now suppose X,X ′ are not almost orthogonal. Let x, y be algebraically depen-
dent (but non-algebraic) solutions, and K the algebraic closure of k(x) (or of k(y)).
So S,R and hence S −R are in K.

By 2.21, it follows that in (K∗/k) ⊗Q k,∑
i

(x− ai) ⊗ ci −
∑
j

(y − bj) ⊗ ej = 0

(with apologies for the mixed additive/multiplicative notation). Now the sum of
residues of either form is 0; so cn = −

∑
i<n ci, en′ = −

∑
j<n′ ej , and∑

i<n

x− ai
x− an

⊗ ci −
∑
j<n′

y − bj
y − bn′

⊗ ej = 0

By the linear independence assumption, we must have (x − a1)/(x − an) = 1 in
K∗/k. Solving, we get x ∈ k, a contradiction. �
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It would not be difficult to extend 2.22 to a precise criterion.
The appearance of Q in 2.22 may suggest that almost-orthogonality to X is

not definable. The truth of the matter is that every orthogonality class of order 1
strongly minimal sets, other than that of the constants, is definable. This requires
different ideas and will be shown elsewhere. (Note however that two strictly minimal
Kolchin-closed, irreducible sets living on P1 are not-almost-orthogonal iff one is the
image of the other by an element of the definable group PGL(2,K).)

Note that the algebraic points of Ξ(P1, ω) are precisely the poles of ω. Let
X∗(P1, ω) denote the strongly minimal set obtained by removing these points. Here
is the strict minimality test.

Lemma 2.23. Let ω be a rational 1-form on P1, defined over k. Assume ω has
at least two nonzero residues, and that no two distinct nonzero residues of ω are
rational multiples of each other. Then X = X∗(P1, ω) is strictly minimal.

Proof. By the previous remarks, X is orthogonal to k. Thus by [7] it is ℵ0-
categorical. By 2.9, it suffices to show that ω is essential. Otherwise, ω = g∗ω′ for
some ω′ and some rational g : P1 → P1 of degree > 1. In particular, the associated
sets X and X ′ are not almost orthogonal; indeed, there are solutions x of X , y of
X ′ with y = g(x).

Let ai be the poles of ω, with residues ci; and bj the poles of ω′, with residues
ej.

Now x, y are in k(x). We have y = g(x), so y − bj is a constant multiple of∏
a∈g−1(bj)

(x− a)ma ; ma is the order of the zero of g − bj at a.
As bj is a pole of ω′, with residue ej say, each a ∈ g−1(bj) must be a pole of

ω, and by computing locally one finds it has a nonzero residue, namely maej . If
a = ai, i.e. g(ai) = bj, write j = j(i). �

Claim. i 7→ j(i) is not 1-1.

Proof. If for a given j ∈ J , g−1(bj) has a single element ai, then this element
accounts for d − 1 of the 2d− 2 ramification points of g, d = deg(g). This cannot
happen at three distinct points. If i 7→ j(i) is 1-1, it follows that ω′ has at most
two nonzero residues, and hence so does ω. But then these residues sum to 0, so
their ratio is −1, a contradiction.

Thus we can assume j(1) = j(2). So c1/c2 = ma1/ma2 ∈ Q. This contradicts
the assumption on the irrationality of the residue ratios. �

3. Definability of non-orthogonality

Let us call a definable or type-definable set X strictly disintegrated if any n
elements of X are independent over the base of definition. (It is known that all
order-one sets are non-orthogonal either to k or to a strictly disintegrated set, cf.
[7].) Two strictly disintegrated types defined over the same base set B are either
orthogonal, or definably isomorphic by a unique definable bijection. (Further, there
exists a unique smallest set B over which some element of the non-orthogonality
class is defined.) Thus (taking Proposition 1.2 into consideration) the algebraic
variety on which X lives is determined up to birational isomorphism by the non-
orthogonality class of X .

We show here that orthogonality to a strictly disintegrated set X is a definable
property of parameters, when X lies on a curve of genus ≥ 1.
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By contrast, T. McGrail and D. Marker showed by example that orthogonality
to the constants does not have this property (2.20).

To avoid tipping the exposition over with technicalities, we assume here some
natural facts around the functoriality of the Manin map and the Albanese variety,
and return to them in appendices (§§3.3 and 3.2 below).

Proposition 3.1. Let C be a curve of genus ≥ 1, or more generally, a subvariety
of an Abelian variety. Let X be a strictly disintegrated definable or type-definable
subset of C. Let Yb be a definable family of irreducible Kolchin-closed definable
sets of finite differential order. Then the set of b such that X is orthogonal to the
generic type of Yb is a definable set.

Proof. We will take X to be a Kolchin-closed subset of C; the proof goes through
for the type-definable case with minor linguistic changes.

Fix b and let Y = Yb. We will work over the differential field L = Lb generated
by b (over a field of definition L0 for X,C, Y ). We will find conditions equivalent
to the orthogonality of Y to X . One of these (condition (3) below) will clearly be
expressible by a first-order sentence, hence a definable property of b.

We may take Y = Yb to be the set of points v ∈ V = Vb at which Dv = s(v),
where Vb is a variety, and s = sb is a certain section of the shifted tangent bundle.
This guarantees Zariski-density of Y in V . In addition, the algebraic closure of a
(generic) element of Yb is the usual field-theoretic algebraic closure, and similarly
for definable closure.

Let d = dim(V ). Let A be the Albanese variety of V (cf. §3.2.) We will use the
existence - after a possible base change - of a family Ab of Abelian varieties and
of maps ιb : Vb → Ab, such that Ab is an Albanese variety for Vb. See 3.7 in §3.2
below.

Let µ : A → U be the Manin map. So U is a vector group, µ a DCF-definable
homomorphism, with kernel of finite Morley rank.

Let Z = Zb be the image of Y under µ ◦ ι.
Also let B be an Abelian variety, into which C is embedded, and let µB : B → U ′

denote the Manin map. Let W denote the image of X in U ′ under µB. Let Xd be
the set of sums of at most d elements of X , with respect to the addition in B. Note
that Xd is a set of finite Morley rank; indeed, from the triviality of the geometry of
X , one deduces immediately that Xd has Morley rank d. Let Wd be the set of sums
of at most d elements of W , in U ′; it is the image of Xd in U ′ under µB. Using
3.9, let E = Eb be a uniformly definable set of affine homomorphisms U → U ′,
containing the image under µ of the set Hom(A,B) of homomorphisms of Abelian
varieties A→ B, and closed under composition with the translation group of U ′.

Claim 3.1. The following conditions are equivalent:
1) X is non-orthogonal to the generic type of Y .
2) There exists a nonconstant affine homomorphism h : A → B of Abelian

varieties such that h(ι(Y )) ⊂ Xd.
3) There exists H ∈ E such that H(Z) ⊂Wd, and H(Z) is infinite.

Proof of Claim. (1) implies (2). Let a ∈ Y = Yb be a generic point. Let F =
(acl(a, b) \ acl(b)) ∩ X . By the triviality of the induced structure on X , F =
{c1, . . . , ci} is a finite set; indeed i ≤ d.

Moreover, using triviality of the algebraic-closure geometry, i > 0: by defini-
tion of non-orthogonality, there exist independent realizations a1, . . . , am of the
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generic type of Y , and c1, . . . , cl of the generic type of X , such that the two tu-
ples a1, . . . , am and c1, . . . , cl fork over b. Using triviality, some ci forks with
(a1, . . . , am). Now if a realization of a trivial regular type forks with an indepen-
dent set, it must fork with some element of that set (cf. [18]). Thus we may take
m = l = 1.

Let c = c1 + . . .+ ci, the sum taken in B. Then c ∈ Xd. Also c is rational over
L(a). There exists a rational function h0 defined over L, with h0(a) = c. h0 maps
V into the Abelian variety B, so h0 factors as the composition of the Albanese map
ι : V → A and an affine homomorphism h : A → B. We have h(ι(a)) ∈ Xd for
generic a ∈ Y , so h(ιY ) ⊂ Xd. Since the ci are independent elements of X over b,
it follows that c /∈ acl(b), so h0 and hence h are nonconstant.

(2) implies (3). We may assume without loss of generality that h(0) = 0, i.e.,
h is a homomorphism. Observe first that h(ιY ) must be infinite. Otherwise Y is
contained in finitely many fibers of h. By the Zariski-density of Y in V , so is V .
Being irreducible, V is contained in h−1(c) for some c. But since V generates the
Albanese A as a ternary group, A = h−1(c). This contradicts the assumption that
h is non-constant.

Now ker(µ), the Manin kernel, is the smallest definable subgroup of A such
that A/ ker(µ) embeds homomorphically into a vector group (cf. 3.12). Since the
composition µBh maps A to a vector group, we must have (µBh)(ker(µ)) = 0, or
h(kerµ)) ⊂ ker(µB). Thus h induces a definable homomorphism H : µA→ µB.

We have H(Z) = HµιY = µBhιY ⊂ µBXd = Wd.
Xd is contained in the algebraic closure of the trivial strongly minimal set X ,

hence is orthogonal to the kernel of the Manin map µB, so it meets each coset of the
Manin map in a finite set. Thus the same is true of hι(Y ). Since hι(Y ) is infinite,
also µBhι(Y ) = H(Z) is infinite.

(3) implies (1). The strongly minimal set X being trivial, it meets every
coset of the Manin kernel in a finite set; hence the map µB is finite-to-one on X ,
so X is non-orthogonal to the strongly minimal set µBX = W . It follows, since
Wd ⊂ acl(W ), that every non-algebraic type contained in Wd is non-orthogonal to
(the generic type of) X . In particular, this is true of the generic type of H(Z).
Thus a definable image of the generic type of Y is non-orthogonal to X , so Y is
non-orthogonal to X . �

Note that in (3), one can quantify over the possible transformations in the uni-
formly definable set E. One can also (“nfcp”) uniformly state that a given definable
set is infinite, cf. [17], 2.13. Thus (3) is a definable property of b. This finishes the
proof of the proposition. �
Definition 3.2. If the conclusion of Proposition 3.1 holds for a minimal type p,
we will say that orthogonality to p is definable.

Corollary 3.3. Let C be a variety admitting a non-constant map into an Abelian
variety. Let X be a strictly disintegrated definable or type-definable subset of C.
Assume X is Zariski-dense in C. Then orthogonality to X is definable.

Proof. Let j : C → B be a non-constant map into an Abelian variety. If j(X) is
infinite, then it is also strictly disintegrated (perhaps after removing finitely many
points), so Proposition 3.1 applies to j(X); and non-orthogonality to X and to
j(X) is the same. If j(X) is finite, then X lies in C′ = j−1(p) for some p ∈ B; but
this contradicts the Zariski-density of X in C. �
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3.1. Appendix: Irreducibility. A Kolchin-closed set is called irreducible if it is
not the union of two proper Kolchin-closed subsets. If one is interested in singular
points, irreducibility can be a delicate question. Consider for instance:

Example 3.4. The Kolchin-closed set defined by 2DxD3x − (D2x)2 − 2x = 0 is
reducible.

Indeed, differentiating 2DxD3x− (D2x)2− 2x = 0, we obtain 2Dx(D4x− 1); so
the set decomposes into the solution x = 0 and 2DxD3x−(D2x)2−2x = 0, D4x = 1.

Thus irreducibility of the defining differential polynomial does not imply Kolchin-
irreducibility.

We do not know whether, in general, singularities included, irreducibility is a
definable property in parameters. The question can be reduced to the following:
given a point p = (0, p2, ..., pm) and a Kolchin-closed set X , known to be irreducible
on x1 6= 0, is p in the closure of X?

In all events, for our purposes, there is no harm in discarding a proper Kolchin-
closed subset. We can thus restrict attention to Kolchin-closed sets of the form

Ξ(V, s) = {x ∈ V : Dx = s(x)}

where s is a regular function on V into the appropriate bundle.
Then clearly any proper Kolchin-closed subset of Ξ(V, s) has the form Ξ(V ′, s′),

where s′ = s|V ′. In this case Ξ(V, s) is irreducible iff the algebraic variety V
is irreducible. Definability of the latter is known classically (and proved model-
theoretically in van den Dries’ thesis).

(In the one-variable case, the above discussion reads as follows. The Kolchin-
closed set is defined by a differential polynomial of order n, f(X,DX, . . . ,DnX).
Consider f as a polynomial in DnX , with leading coefficient h = h(X, . . . ,Dn−1X).
Let X ′ be defined by f = 0, h 6= 0. Then V is irreducible iff f is irreducible as a
differential polynomial. Since any factors of f would have smaller degree in each
variable than f , we can quantify over the possible coefficients of such factors. Thus
here definability of irreducibility is immediate.)

3.2. Appendix: Families of Abelian varieties. The proof of Proposition 3.1
used a uniformity principle for the construction of the Albanese variety, and of the
maximal vector extension of an Abelian variety. The purpose of this subsection is
to provide a proof.

The material in this subsection involves no derivations, and we work within
algebraic geometry (over an algebraically closed field of characteristic 0). A gen-
eral reference for this section is [13]. We could not find a direct reference for the
uniformity principle we need, though we think it is standard.

By an affine homomorphism between groups we will mean a map of the form
x→ h(x) + b, where h is a group homomorphism, and b a constant.

An Albanese variety of a given variety V is an Abelian variety A, together with
a rational map f : V → A such that for any rational map h on V into another
Abelian variety B, there exists a unique affine homomorphism g : A → B with
h = gf .

Lemma 3.5. Let V be a projective variety, defined over an algebraically closed field
k0, Ct a generic curve on V , Jt = J(Ct) the Jacobian of Ct. Then the Albanese
variety of V can be identified with the quotient of Jt by a connected subgroup S.
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S is the smallest subgroup of Jt such that Jt/S is isomorphic to a variety K defined
over k0.

Proof. C = Ct is the intersection of V with a generic linear subspace of codimension
dim(V ) − 1. Let A be the Albanese of V . The map V → A restricts to C → A
and hence induces an affine homomorphism Jt → A. The genericity of t guarantees
that the image of C = Ct in A is not contained in any translate of a proper Abelian
subvariety of A, so the map Jt → A is surjective. Clearly it factors through the
map Jt → K.

Now we must show that the surjective map K → A is an isomorphism. Consider
the composed map Ct → Jt → K. Let (a, b) be a generic point of the graph of
this map. Then a is a generic point of A, a ∈ Ct, b ∈ K, and b is rational over
(a, t). But the locus of t over a is a rational variety (indexing the linear subspaces
of projective space, of appropriate dimensions, passing through a). Hence, with a
fixed, the map t → b maps a unirational variety into an Abelian one, and so must
be constant. Thus b is rational over k0(a). So there exists a rational map V → K
such that for generic t, the restriction to Ct agrees with Ct → Jt → K. This map
induces a morphism A → K, surjective since Jt → K is surjective, and since no
proper subgroup of Jt contains the image of Ct. It remains only to check that this
is an isomorphism, and inverse to the map K → A. Since A → K is surjective, it
suffices to check that A → K → A = IdA. Since Jt → A is surjective, it suffices
to check that Jt → A → K → A = Jt → A. But Jt → A → K agrees with the
previously constructed Jt → K, since they agree on Ct. Thus it suffices to check
that Jt → K → A = Jt → A. This is clear by definition of the map K → A. �

Lemma 3.6. Let Cb be a uniformly definable family of smooth nonsingular curves,
indexed by a variety B. Let Jb, jb be a uniformly definable family of varieties and
maps jb : Cb × Cb → Jb. Assume that for generic b∗ ∈ B, Jb∗ is the Jacobian of
Cb∗ , and jb∗(x, y) = x− y. Then the same is true for all b on a Zariski-open subset
of B.

Proof. The following facts hold true for b = b∗ (with respect to some auxiliary
formulas and integers), and can be witnessed by a first-order formula in b, hence
are true for almost all b ∈ B:

(a) Jb is a group variety, and a projective variety.
(b) jb(x, z) = jb(x, y) + jb(y, z)
(c) For any fixed p ∈ Cb, any element of Jb is the sum of d elements of jb(p, Cb).
(d) If x1 + . . .+ xd = y1 + . . .+ yd for points x1, ..., yd ∈ jb(p, Cb), then the cycle

x1 + ...+ xd − y1 − ...− yd is linearly equivalent to 0 on Cb.
(In property (d), the cycle is the cycle of zeroes and poles of a rational function

on Cb. Since such a function exists for any x1, . . . , xd, y1, . . . , yd satisfying the
hypothesis, it must by compactness exist within a uniformly definable family; so a
first order formula true of b∗ can ascertain the truth of the fact.)

Conversely to (d), since by (a) Jb is an Abelian variety, if the cycle x1 + ... +
xd− y1− ...− yd is linearly equivalent to 0, then x1 + . . .+ xd = y1 + . . .+ yd in Jb.

It follows from (a)–(d), using Abel’s criterion, that Jb is the Jacobian of Cb. �

Lemma 3.7. Let Vb be a uniformly definable family of projective varieties, indexed
by a variety B. Let Ab be the Albanese of Vb. Then the family Ab is uniformly
definable.
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Proof. Say B, V are defined over an algebraically closed field k0. Let Cb,t be a
generic curve on Vb, i.e. the intersection of Vb with a linear subspace of projective
space of codimension dim(Vb)−1, chosen generically over k0(b). Let jb,t : (Cb,t)2 →
Jb,t be the Jacobian of Cb,t. The family Jb,t, jb,t is uniformly definable by 3.6.

By 3.5, for generic b∗ and t, the Albanese Ab∗ of Vb∗ is isomorphic via an iso-
morphism hb∗,t to Jb∗,t/Sb∗,t, where Sb∗,t is a connected subgroup. Moreover, Sb∗,t
has no k0(b∗)-isotrivial factors, i.e. no nonzero homomorphisms into Abelian vari-
eties defined over finite extensions of k0(b∗). (To see this we may apply 3.5 over
k0(b∗)alg.)

For almost all b and t, Sb,t is a connected subgroup of Jb, Ab is an Abelian
variety defined over k0(b), and Ab = Jb,t/Sb,t. Moreover, for almost all b, for
generic t, Sb,t has no k0(b)-isotrivial factors. The deduction of this last fact from
the corresponding fact at b∗ is explained in [6]. (The point there is that the variety
Wb∗ over k(b∗), whose function field is the finite extension of the function field
of Sb∗,t generated by the l-torsion points of Sb∗,t, remains irreducible when b∗ is
specialized to b, for almost all b.)

Hence by 3.5, for almost all b, Ab is the Albanese of Vb.
(An alternative argument: the Albanese Ab is isomorphic to Jb,t/S̄b,t for some

S̄b,t. It remains to argue that S̄b,t = Sb,t. Clearly S̄b,t ⊂ Sb,t. Since Sb,t is con-
nected, if S̄b,t is a proper subgroup, then dim(Ab) > dim(Ab∗). However this dimen-
sion can be viewed as the dimension of a cohomology group, and by Grothendieck’s
semi-continuity must be constant on some Zariski-open subset of B. ) �

The proof of Proposition 3.1 will require a uniform family Mb of commutative
algebraic group varieties, extensions of Ab by vector groups, such that the prolon-
gation map TDMb → Mb splits. This splitting property can trivially be captured
by a first-order formula in the language of differential fields, and this suffices for
the purposes of 3.1. Still it is nice to know that one can take Mb to be an algebraic
family.

If A is an algebraic group, a vector extension is an algebraic group B together
with an exact sequence 0 → V → B → A → 0, with V a vector group. According
to [22], the dimension of such a group B is bounded. It follows that there exists
a unique one 0 → VA → A′ → A → 0 enjoying the universal property: for any
0 → V → B → A → 0, there exists a unique morphism A′ → B compatible with
Id : A → A and with some morphism VA → V . This A′ is called the maximal
vector extension of A. It is obviously functorial in A.

Lemma 3.8. Let Ab be a uniformly definable family of Abelian varieties, indexed
by a variety B. Let Mb = Ab

′ be the maximal extension of Ab by a vector group.
Then the family Mb is uniformly definable.

Proof. A proof similar to that of 3.7 can be given, using the following two facts.
1) By [22] or [25], extensions of an Abelian variety A by Ga are classified by

H1(A,OA). Given an extension 0 → Ga → B → Ab → 0 of Ab by Ga, the
corresponding classifying element of H1(Ab, Ga) can be found uniformly, as the
proofs there show.

2) By [5], III, 12.8, 12.9, the H1(A,OA) form a uniformly definable family.
(Using the notation there, let f : X → Y be a projective morphism. Let F be the
structure sheaf of X . We want to show that the family Hi(Xy,Fy) is uniformly
definable. By generic flatness,we can decompose Y into locally closed sets Yj such
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that f : f−1Yj → Yj is flat. So we may assume f is flat, i.e., F is flat over Y . By
12.8, dimk(y)H

i(Xy,Fy) is upper semicontinuous. Thus there exists a partition of
Y into locally closed sets Yi, with hi constant on Yi. By 12.9, there exists a vector
bundle Ei on Yi (Ei = SpecRif∗(F) on Yi) such that Hi(Xy,Fy) is isomorphic to
the fiber of Ei at y.) �

Alternatively, one can use the bounds on degrees of projective embeddings of
vector extensions of Abelian varieties, found in [2].

3.3. Appendix: Image of the Manin functor. This appendix contains results
that we believe appear in [3], implicitly or explicitly, but we could not conveniently
quote.

Let ΨA denote the image of an Abelian variety A under the Manin map. Given
two Abelian varieties A and B, Ψ induces a homomorphism from Hom(A,B) into
the group of definable homomorphisms from ΨA → ΨB. End(A) = Hom(A,A)
is never uniformly definable: it is countable. Nor is the group Homdef(ΨA,ΨB)
of DCF-definable homomorphisms uniformly definable. Even for the 1-dimensional
vector space V over a differentially closed field K, Homdef(V, V ) is the ring gen-
erated by K and the derivation D; it is not contained in any uniformly definable
family. Nevertheless, we show that the image of Hom(A,B) in Hom(ΨA,ΨB) is
contained in a uniformly definable subgroup (subring if A = B).

Lemma 3.9. Let A and B be Abelian varieties. Then the image of Hom(A,B)
in Hom(ΨA,ΨB) is contained in a uniformly definable family. Moreover if A,B
vary in a uniformly definable family, then the image of Hom(A,B) is contained in
a uniformly definable family of homomorphisms ΨA→ ΨB, varying uniformly with
the parameter.

Towards the proof of 3.9, we recall the following functorial construction of the
Manin maps. Given an Abelian variety A, let A′ be the maximal extension of A by
a vector group (Appendix 3.2). A → A′ is a functor on the category of algebraic
groups.

On the other hand, given a differential field L, the prolongation functor takes
algebraic groups B over L to exact sequences 0 → TeB → BD →πB B → 0
of algebraic groups over L. Here TeB is the tangent space to B at the identity
element e.

If K is a differential field extension of L, the derivation of L induces a map
iD : B → BD (given, in coordinates, by (a1, ..., an) 7→ (a1, ..., an, Da1, ..., Dan)).

We write A∗ for A′D, ΨA′ for TeA′. Since A∗ is a vector group extension of
A′, the universal property of A′ yields an algebraic group homomorphism fA′ :
A′ → A∗. Thus 0 → ΨA′ → A∗ → A′ → 0 is split; we obtain a projection
1− fA′πA′ : A∗ → ΨA′ .

The Manin map µA′ of A′ is then defined to be the composition

A′ →iD A′
∗ →1−fA′πA′ ΨA′.

For any homomorphism h : A→ B, the functoriality of A→ A′ and of B → BD
yields a map Ψ(h) : ΨA′ → ΨB′. This is a morphism of algebraic groups. Since
ΨA′ and ΨB′ are vector groups, it is a linear transformation.

Proof of 3.9 (Written for the case A = B). To obtain the Manin map on A itself,
we let ΨA = (ΨA′)/µA′(VA), where VA is the kernel of A′ → A. Then µA′ induces a
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natural map µA : A→ ΨA. An endomorphism g of ΨA′ respecting µA(VA) induces
an endomorphism of ΨA, denoted π∗(g).

Any endomorphism h of A yields functorially an endomorphism h′ of A′. By
construction, the image of h′ in ΨA′ is a linear transformation. Thus the image of
End(A) in End(ΨA) is {π∗(g) : g ∈ GL(A′)}. Since GL(A′) is uniformly definable,
so is the image of End(A). �

Lemma 3.10. µA′ : A′ → ΨA′ is a surjective map of A′ into the algebraic vector
group ΨA′.

For any morphism j : B → A of algebraic groups over L, j∗ΨB′ = µA′(j′B′).
In particular, µA′(j′B′) is an algebraic subgroup of ΨA′.

Proof. Note that the kernel of µA′ has finite Morley rank. Thus the image of µA′ has
Morley rank ω dim(A′). It is a definable subgroup of ΨA′, and we have dim(ΨA′) =
dim(A′) as algebraic groups, so the Morley rank of ΨA′ is also ω dim(A′). Therefore
µA′ is surjective.

The definition of the map j∗ : ΨB′ → ΨA′ and the verification of the functoriality
j∗µB′ = µA′j

′ are left to the reader. Given this, µA′(j′B′) = j∗µB′(B′) = j∗ΨB′.
�

Remark 3.11. As pointed out to us by Thomas Scanlon, the image of the endomor-
phism ring is simply contained in the space of linear transformations ΨA → ΨA.
While the map µ : A′ → Ψ(A′) depends on the differential algebraic structure,
the image of VA under this map is an algebraic group, and hence (say by quantifier
elimination for DCF0) depends only on the given derivation on the base field. Thus
the functor Ψ(A) = Ψ(A′)/Ψ(VA) can be defined on the category of algebraic vari-
eties over the base field L. In particular, the images of algebraic homomorphisms
are again algebraic homomorphisms.

Remark 3.12. Any differentially definable homomorphism A → V , where V is a
vector group, factors through the Manin map µ. The Manin kernel ker(µ) is the
smallest definable subgroup S of A such that A/S embeds into a vector group.

Proof. The second statement is equivalent to the first, and the first follows from the
same statement for A′, the maximal vector extension of A. Let f be a differential
rational group homomorphism on A′ into a vector group. On the Manin kernel
ker(µ), f coincides with a rational map F (since the derivative of a ∈ ker(µ) is
rational in a.) Taking Zariski closure, F gives a rational group homomorphism
A′ → V . This group homomorphism must be trivial by definition of the maximal
vector extension (otherwise A′ splits into the kernel of F , and a vector group). So
f vanishes on ker(µ), as required. �

4. Differential fields admitting quantifier elimination

Is every superstable differential field differentially closed?
In this section we answer the question by constructing theories of differential

fields that admit quantifier elimination, but are not differentially closed. Such
fields are automatically ω-stable.

This confirms a prediction made in [19]. By the work there, any superstable
differential field has enough points in definable sets non-orthogonal to nontrivial
types. Thus one must look at types with trivial geometry to settle the problem.
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Our main new tool here is the definability of non-orthogonality, i.e., Propositions
2.1 and 3.1.

Applying this, we define a theory T in the language of differential fields, L =
{+,−, ·, 0, 1, D}. Recall,

Proposition 2.1. Let C be a curve of genus ≥ 1, or more generally, a subvariety
of an Abelian variety. Let X be a strongly minimal subset of C; assume the induced
structure on X is trivial. Let Yb be a definable family of Kolchin-closed definable
sets of finite differential order. Then the set of b such that X is orthogonal to the
generic type of Yb is definable.

By Proposition 2.1 or Lemma 2.13, strictly minimal sets X living on curves C
as in 2.1 do exist; moreover, we may find C and X defined over Q. Fix such C,X .
Suppose X is defined by a formula ϕ(v).

Definition of T = T (X). (1) The universal part T∀ of T consists of the following
(i), (ii), and (ii′).

(i) the theory of differential fields of characteristic 0 (DF0)
(ii) X has no solution, i.e., ¬(∃x)(ϕ(x)),
(ii′) X has no solution even in the algebraic closure.

This is actually an axiom scheme. Let h be a monic polynomial over
F , in one variable. Note that if h(x) = 0 (in the algebraic closure F̃ of
F ), then Dx = −h∗(x)/h′(x), where h∗ is the result of applying D to the
coefficients of h. Thus differential algebraic statements about solutions to h
reduce to algebraic ones. There exists therefore a sentence ξh over F stating
that, among tuples of roots of h in the algebraic closure of F , there are no
solutions to X . One can initially take it to be the negation of an existential
sentence in the language of fields, and then, using quantifier elimination in
ACF, translate to a quantifier-free formula. The axioms (ii′) ensure that
ξh holds for all such h.

(2) The rest of T consists of the following (iii) and (iv).
(iii) The theory of algebraically closed fields of characteristic 0 (ACF0),
(iv) This axiom scheme will have an axiom for each instance of the following

data:
U,W differential-algebraic varieties over Q, π : U →W , such that Ub :=

π−1(b) has finite differential order, for each b ∈ W . We take U to be of the
form considered in §3.1; by the discussion there,

W1 = {b : Ub is irreducible}
is a definable set in DCF0; we implicitly consider it to be defined by a
quantifier-free formula.

Let pb denote the generic type of Ub (for b ∈W1).
By Proposition 3.1,

W2 := {b ∈ W1 : pb is orthogonal to X}
is also definable; say by θ(w), a quantifier-free formula.

Finally, we impose the following axiom: (∀w ∈ W )(θ(w) → (∃u)(u ∈ U,
π(u) = w)).

Remark 4.1. By definition, the axiom group (1)(ii′) is the set of universal conse-
quences of (1)(i),(ii) and (2)(iii). One can write it down explicitly, but this is not
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necessary for our purposes. We will merely use the fact that every model of (1)
extends to a model of (1) + (2)(iii).

Lemma 4.2. The theory T = T (X) is consistent. In fact, T∀ is consistent, and
any model of T∀ can be extended into a model of T .

Proof. Consistency of T∀: Qalg, with the trivial derivation, is a model of (1)(i,ii)
and (2)(iii), hence of (1)(ii′) as well. This uses the fact that X has no algebraic
solutions. That in turn is part of the assumption of trivial induced structure on X .

We now show that any model M of T∀ can be extended into a model of T . We
can view M as embedded in a universal domain U for DCF0.

First extend M to the algebraic closure Malg. By Theorem 7 in Chapter X,
section 7 in [14], we can extend the derivation from M to Malg as well. The truth
of (1)(ii′) in M guarantees the truth of (1) in Malg. Thus we assume that our model
M is algebraically closed.

To extend M into a model of T we need to iterate the following process. Suppose
we are given U, π,W as in (iv) and b ∈ W (M) such that θ(b) holds.

To make (iv) hold, we simply add a generic solution c ∈ Ub (taken from U).
But we must show that after adding the generic c to M , (ii) and (ii′) remain true.
This guarantees that in the end we get a model of T . Thus let N = M(c)alg ⊂ U.
We must show that (1) continues to hold for N . Since N is algebraically closed, it
suffices to show (1)(ii), i.e. �
Claim. M(c)alg ∩X = ∅.
Proof of Claim. We work in DCF0, treating M as a substructure of U. “acl” and
orthogonality refer to U.

Suppose e ∈M(c)alg ∩X . Since M |= T∀, e /∈M . Thus e ∈ acl(M(c)) \ acl(M).
So c,e fork over M . But c realizes pb over M . This contradicts the assumption that
θ(b) holds, so that pb is orthogonal to X .

This completes the proof of the claim, and of the lemma. �
Lemma 4.3. Let M be a model of T (X). Let E be a Kolchin-closed set defined
over M . If some generic type of E is orthogonal to X, then E(M) 6= ∅.
Proof. We use induction on the Morley rank of E (computed in DCF0).

Note first that for any n, in some elementary extension of M , there exists a
generic point of L(n) = {x : Dnx = 0}. This is because the generic type of L(n)
has finite differential order, is internal to the constants, and is orthogonal to X .

By compactness, in some elementary extension N of M , there exists also a point
a differentially transcendental over M .

We may assume E is irreducible. If E has finite Morley rank, then an instance
of axiom scheme (2)(iv) of T (X) explicitly states that E has a point. Otherwise,
let e = (e1, . . . , ek) be a generic point of E over M . Then some ei, say e1, is
differentially transcendental over M . Let

E′ = {(x2, . . . , xk) : (a, x2, . . . , xk) ∈ E}.
Then E′ has smaller Morley rank than E. Moreover, some generic type of E′

is orthogonal to X . Otherwise, there would exist b ∈ E′, generic over M(a), with
acl(M(a, b))∩X 6= ∅; but (a, b) is a generic point of E, contradicting the assumption
on E. Thus, by induction, there exists b′ ∈ E′(N). So (a, b′) ∈ E(N). Since M is
an elementary submodel of N , E(M) 6= ∅. �
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Proposition 4.1. T is a model completion of T∀.

Proof. To show that T is a model completion of T∀, we prove the following two
facts:

(a) If M is an existentially closed model of T∀, then M is a model of T .
(b) If M |= T , A is a substructure of M , and φ is a quantifier-free formula over

A, with a solution in some N |= T , A ⊂ N , then φ has a solution in M .

For (a) it suffices to show that M satisfies (iv), i.e., θ(b) → Ub 6= ∅. Assume
M |= θ(b). By Lemmas 4.2 and 4.3, M has an extension M ′ |= T∀ in which Ub 6= ∅.
Since M is existentially closed, the same is true in M . So M is a model of T .

Now let M,N,A, φ be as in (b). Let c ∈ N , N |= φ(c). The usual trick allows
us to assume φ is positive. (If φ contains a negative part f(c) 6= 0, replace c by
cd, where d = f(c)−1, and replace that negative part by f(c)d = 1.) Let E0 be the
smallest Kolchin-closed set, defined over A, such that c ∈ E0. In N , tp(c/A) is a
generic type of E0, and acl(Ac) ∩ X ⊂ N ∩ X = ∅. It follows that some generic
type of E0 is orthogonal to X (in DCF0). In M , let E be a component of E0

whose generic type is orthogonal to X . By 4.3, E(M) 6= ∅. Let c′ ∈ E(M). Then
φ(c′). �
Remark 4.4. It follows that T admits quantifier elimination, since any model com-
pletion of a universal theory admits quantifier elimination (cf. Theorem 13.2 in [24]),
or directly from (b). Note also that any quantifier eliminable theory of differential
fields is ω-stable (cf. Lemma 10.2 in [17]).

T is complete, as it admits quantifier elimination, and Q is a substructure of any
model of T .

Remark 4.5. T admits elimination of imaginaries. This follows from the following
lemma, applied with T2 = T∀, T1 = theory of differential fields of characteristic 0.

Lemma 4.6. Let T1 ⊂ T2 be universal theories in the same language, with model
completions T̃1,T̃2. Assume that, in T̃1, every 0-definable function is equivalent to
the interpretation of a function symbol. (Thus, if Mi |= Ti and M2 is a substructure
of M1, then M2 is closed under the 0-definable functions in M1).

(1) If T̃1 is (κ-)stable, so is T̃2.
(2) If T̃1 admits coding of finite sets, so does T̃2.
(3) If T̃1 is stable and admits weak elimination of imaginaries, so does T̃2.
(4) If T̃1 is stable and admits elimination of imaginaries, so does T̃2.

Proof. The stability statement (1) is immediate, by counting types; it suffices to
count quantifier-free types; any model of T2 embeds as a substructure of a model
of T1, and any consistent T2-quantifier-free type is also consistent with T1. Thus
the number of types over a model of T̃2 of size κ is at most the number of types
over a model of T̃1 of the same size.

Let us now prove (2). Let U2 ⊂ U1 be saturated models of T̃2 and T̃1, respectively.
Let F be a finite set of elements of U2. Since T̃1 admit coding of finite sets, this
set is coded by some tuple b from U1; F = D(b), where D(y) is a T̃1-uniformly
definable family of distinct finite sets of fixed size m. Since b is definable from the
elements of F , it follows that b ∈ U2. We have D(b)U2 = D(b) ∩ U2 = F . If b′ is
another element of U2, with the same type as b, then it also has the same type as
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an element of U1. So D(b′) is an m-element set, not equal to D(b). Whether or not
all the elements of D(b′) are in U2, we cannot have D(b) = D(b′). This shows that
b codes F in U2 too.

To prove (3), suppose e is an imaginary element in a model M2 of T̃2; let V denote
the union of the (non-imaginary) sorts of the language. Let E = aclT̃2

(e) ∩ V . We
shall show that e is definable over E.

We have e = f(c), for some definable function f and some tuple c of standard
elements of M2. Let c′ ∈ U2 realize tp(c/ aclT̃2

(e)), with c′ T2-independent from
M2 over e.

Let p = stpT2
(c′/c, E).

Embed M2 in a model M1 of T1; choose M1 independent from c′ over M2 (in the
sense of T1).

Let ϕ(x, y) be a quantifier-free formula over E, and let θ(x) be the p(x)-definition
of ϕ, in the sense of T1. Then θ is almost over M2. Since T̃1 eliminates imaginaries,
θ is coded in the standard sorts V . More precisely, there exist an element ε of V
and a finite set Fε of tuples of V defined in a quantifier-free way from ε, with ε
serving as canonical parameter, such that θ is quantifier-free definable from any
element of Fε.
θ is an extendible definition (i.e. {ϕ(x, d) ⇔ θ(d) : d ∈ U1} is consistent). We

have indeed

ϕ(c′, d)⇔ θ(d)

for all d ∈M1.
This remains true when restricted to T̃2: the quantifier-free formula θ is almost

over M2, i.e., it has finitely many conjugates under Aut(U1/M2); so it certainly
has finitely many conjugates in Aut(U2/M2). Since M2 is a model, it is over M2.
Moreover, ϕ(c′, e)⇔ θ(e) for e ∈M2. Thus θ is also the tp(c′/M2)-definition of ϕ,
in the sense of T̃2.

By independence of c′,M over e, θ is over aclT2(e). But it is coded in V . So θ
is over E.

In particular, taking for ϕ the formula f(x) = f(y), we see that e is definable
over E. Weak elimination of imaginaries follows.

(4) is immediate from (2) and (3). �

Remark. (4) is not valid without the stability assumption: take T1 to be the empty
theory in a language with a single binary relation R, and T2 the theory stating that
R is an equivalence relation.

Remark 4.7. There exists a continuum of different substructure complete theories
of differential fields of characteristic 0.

Sketch of proof. Using Proposition 2.1, choose a strictly minimal set Xn living on
a curve Cn of genus n, defined over Q. For any set of natural numbers S, consider
the class of differential fields M of characteristic 0 such that, for n ∈ S, Xn has
no points in the algebraic closure of M . This is a universal theory; one shows
it has a model completion. The axioms of the model completion state that any
Zariski-dense Kolchin-closed subset Y of a variety V has a point, provided that Y
is orthogonal to each Xn, n ∈ S. This does not immediately appear to be first-
order as such. However, let d = d(V ) be the dimension of the Albanese variety A
of V . We saw in §2 that as V runs in a definable family of varieties, d(V ) remains
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bounded. We also saw that if Y and Xn are non-orthogonal, then there exists a
dominant rational map V → X , hence a surjective rational map from A to the
Jacobian of Cn. So d(V ) ≥ n. Thus the proviso in the axioms can be restated:

Any Zariski-dense Kolchin-closed subset Y of a variety V has a point, provided
that Y is orthogonal to each Xn, n ∈ S, n ≤ d(V ).

This last statement is seen to be first-order in the same way as in the proof of
3.1. �

Remark 4.8. Any superstable theory in a countable language can be interpreted in
a superstable differential field.

Sketch of proof. Consider for convenience a superstable theory T in a language
L with a single predicate R of arity r. It is convenient to define the theory of
superstable fields in a language {+, ·, D,R}; however, R will be 0-definable from
the other relations, so at the cost of complicating the theory it can be removed
from the language.

Pick a strictly minimal set Y on the affine line; it need not live on the affine line,
so it could be the image of a set produced by Proposition 2.1, or it could be one of
Rosenlicht’s or Shelah’s sets. Pick also a curve E over Q of genus γ > 2r. Choose E
whose Jacobian is not isogenous to a power of an elliptic curve. (For example, take
a generic linear section of a product of r non-isogenous elliptic curves.) Pick an
r-dimensional affine subspace S̄ of Ω1(E), defined over Qalg, such that gS̄ ∩ S̄ = ∅
for g ∈ G = Aut(E/k) (Since G is finite, this will be the case for almost all r-
dimensional affine subspaces.) Let S : Ar → S̄ be an isomorphism of affine spaces.
Then:

The theory T ∗ will state that the field is an algebraically closed differential field.
R is an r-ary relation on Y ( R ⊂ Y r).
The induced structure (Y,R) is a model of T .
The strongly minimal sets Ξ(E,S(t)) do not have a point if t ∈ R. However, any

Kolchin-closed set orthogonal to all these Ξ(E,S(t)) does have a point.
Further details are left to the reader. �
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