Sheaf cohomology and free resolutions over exterior algebras
Authors:
David Eisenbud, Gunnar Fløystad and Frank-Olaf Schreyer
Journal:
Trans. Amer. Math. Soc. 355 (2003), 4397-4426
MSC (2000):
Primary 14F05, 14Q20, 16E05
DOI:
https://doi.org/10.1090/S0002-9947-03-03291-4
Published electronically:
July 10, 2003
MathSciNet review:
1990756
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We derive an explicit version of the Bernstein-Gel'fand-Gel'fand (BGG) correspondence between bounded complexes of coherent sheaves on projective space and minimal doubly infinite free resolutions over its ``Koszul dual'' exterior algebra. Among the facts about the BGG correspondence that we derive is that taking homology of a complex of sheaves corresponds to taking the ``linear part'' of a resolution over the exterior algebra.
We explore the structure of free resolutions over an exterior algebra. For example, we show that such resolutions are eventually dominated by their ``linear parts" in the sense that erasing all terms of degree in the complex yields a new complex which is eventually exact.
As applications we give a construction of the Beilinson monad which expresses a sheaf on projective space in terms of its cohomology by using sheaves of differential forms. The explicitness of our version allows us to prove two conjectures about the morphisms in the monad, and we get an efficient method for machine computation of the cohomology of sheaves. We also construct all the monads for a sheaf that can be built from sums of line bundles, and show that they are often characterized by numerical data.
- [ABW] Kaan Akin, David A. Buchsbaum, and Jerzy Weyman, Schur functors and Schur complexes, Adv. in Math. 44 (1982), no. 3, 207–278. MR 658729, https://doi.org/10.1016/0001-8708(82)90039-1
- [AO] Vincenzo Ancona and Giorgio Ottaviani, An introduction to the derived categories and the theorem of Beilinson, Atti Accad. Peloritana Pericolanti. Cl. Sci. Fis. Mat. Natur. 67 (1989), 99–110 (1991). MR 1113077
- [AAH] Annetta Aramova, Luchezar L. Avramov, and Jürgen Herzog, Resolutions of monomial ideals and cohomology over exterior algebras, Trans. Amer. Math. Soc. 352 (2000), no. 2, 579–594. MR 1603874, https://doi.org/10.1090/S0002-9947-99-02298-9
- [Bar] W. Barth, Moduli of vector bundles on the projective plane, Invent. Math. 42 (1977), 63–91. MR 460330, https://doi.org/10.1007/BF01389784
- [Bei] I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Algebraic vector bundles on 𝑃ⁿ and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66–67 (Russian). MR 509387
- [BGG] I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, Algebraic vector bundles on 𝑃ⁿ and problems of linear algebra, Funktsional. Anal. i Prilozhen. 12 (1978), no. 3, 66–67 (Russian). MR 509387
- [BE] David A. Buchsbaum and David Eisenbud, Generic free resolutions and a family of generically perfect ideals, Advances in Math. 18 (1975), no. 3, 245–301. MR 396528, https://doi.org/10.1016/0001-8708(75)90046-8
- [Buc1] G.-M. Greuel and G. Trautmann (eds.), Singularities, representation of algebras, and vector bundles, Lecture Notes in Mathematics, vol. 1273, Springer-Verlag, Berlin, 1987. MR 915165
- [Buc2] R.-O. Buchweitz: Maximal Cohen-Macaulay modules and Tate-Cohomology over Gorenstein ring Preprint (1985).
- [DE] W. Decker and D. Eisenbud: Sheaf algorithms using the exterior algebra, in Computations in Algebraic Geometry with Macaulay2, ed. D. Eisenbud, D. Grayson, M. Stillman, and B. Sturmfels. Springer-Verlag, New York, 2001.
- [DS1] Wolfram Decker and Frank-Olaf Schreyer, On the uniqueness of the Horrocks-Mumford bundle, Math. Ann. 273 (1986), no. 3, 415–443. MR 824431, https://doi.org/10.1007/BF01450731
- [DS2] Wolfram Decker and Frank-Olaf Schreyer, Non-general type surfaces in 𝑃⁴: some remarks on bounds and constructions, J. Symbolic Comput. 29 (2000), no. 4-5, 545–582. Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998). MR 1769655, https://doi.org/10.1006/jsco.1999.0323
- [Dec] Wolfram Decker, Stable rank 2 vector bundles with Chern-classes 𝑐₁=-1,𝑐₂=4, Math. Ann. 275 (1986), no. 3, 481–500. MR 858291, https://doi.org/10.1007/BF01458618
- [Eis] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- [EG] David Eisenbud and Shiro Goto, Linear free resolutions and minimal multiplicity, J. Algebra 88 (1984), no. 1, 89–133. MR 741934, https://doi.org/10.1016/0021-8693(84)90092-9
- [EPo] David Eisenbud and Sorin Popescu, Gale duality and free resolutions of ideals of points, Invent. Math. 136 (1999), no. 2, 419–449. MR 1688433, https://doi.org/10.1007/s002220050315
- [EPSW] D. Eisenbud, S. Popescu, F.-O. Schreyer and C. Walter: Exterior algebra methods for the Minimal Resolution Conjecture, Duke Math. J. 112 (2002), 379-395.
- [EPY] D. Eisenbud, S. Popescu, and S. Yuzvinsky: Hyperplane arrangements and resolutions of monomial ideals over an exterior algebra. Trans. Amer. Math. Soc., this issue.
- [ES1] D. Eisenbud and F.-O. Schreyer: Sheaf cohomology and free resolutions over the exterior algebras, http://arXiv.org/abs/math.AG/0005055 Preprint (2000).
- [ES2] D. Eisenbud, F.-O. Schreyer, and Jerzy Weyman: Resultants and Chow forms via exterior syzygies. J. Amer. Math. Soc. 16 (2003) 537-579.
- [EPe] Geir Ellingsrud and Christian Peskine, Sur les surfaces lisses de 𝑃₄, Invent. Math. 95 (1989), no. 1, 1–11 (French). MR 969410, https://doi.org/10.1007/BF01394141
- [EW]
D. Eisenbud and J. Weyman: Fitting's Lemma for
-graded modules. Trans. Amer. Math. Soc., this issue.
- [Flo1] G. Fløystad: Koszul duality and equivalences of categories. http://arXiv.org/ abs/math.RA/0012264 Preprint (2000a).
- [Flo2] G. Fløystad: Describing coherent sheaves on projective spaces via Koszul duality. http://arXiv.org/abs/math.RA/0012263 Preprint (2000b).
- [Flo3] Gunnar Fløystad, Monads on projective spaces, Comm. Algebra 28 (2000), no. 12, 5503–5516. Special issue in honor of Robin Hartshorne. MR 1808585, https://doi.org/10.1080/00927870008827171
- [Gel] K. Okonek, M. Shneĭder, and Kh. Shpindler, Vektornye rassloeniya na kompleksnykh proektivnykh prostranstvakh, Matematika: Novoe v Zarubezhnoĭ Nauke [Mathematics: Recent Publications in Foreign Science], vol. 36, “Mir”, Moscow, 1984 (Russian). Translated from the English by V. Ya. Lin; With an appendix by S. I. Gel′fand; Translation edited and with a preface by Yu. I. Manin. MR 778380
- [GM] Sergei I. Gelfand and Yuri I. Manin, Methods of homological algebra, Springer-Verlag, Berlin, 1996. Translated from the 1988 Russian original. MR 1438306
- [GS] D. Grayson and M. Stillman: Macaulay2. http://www.math.uiuc.edu/Macaulay2/.
- [Gre] Mark L. Green, The Eisenbud-Koh-Stillman conjecture on linear syzygies, Invent. Math. 136 (1999), no. 2, 411–418. MR 1688437, https://doi.org/10.1007/s002220050314
- [GD] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). MR 199181
- [Hap] Dieter Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119, Cambridge University Press, Cambridge, 1988. MR 935124
- [Har] Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- [HR] J. Herzog and T. Römer: Resolutions of modules over the exterior algebra, working notes, 1999.
- [Hor] G. Horrocks, Projective modules over an extension of a local ring, Proc. London Math. Soc. (3) 14 (1964), 714–718. MR 0169878, https://doi.org/10.1112/plms/s3-14.4.714
- [HM] G. Horrocks and D. Mumford, A rank 2 vector bundle on 𝑃⁴ with 15,000 symmetries, Topology 12 (1973), 63–81. MR 382279, https://doi.org/10.1016/0040-9383(73)90022-0
- [Kap1] M. M. Kapranov, On the derived categories of coherent sheaves on some homogeneous spaces, Invent. Math. 92 (1988), no. 3, 479–508. MR 939472, https://doi.org/10.1007/BF01393744
- [Kap2] M. M. Kapranov, On the derived category and 𝐾-functor of coherent sheaves on intersections of quadrics, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 1, 186–199 (Russian); English transl., Math. USSR-Izv. 32 (1989), no. 1, 191–204. MR 936529, https://doi.org/10.1070/IM1989v032n01ABEH000752
- [MP] Mireille Martin-Deschamps and Daniel Perrin, Sur la classification des courbes gauches, Astérisque 184-185 (1990), 208 (French). MR 1073438
- [OSS] Christian Okonek, Michael Schneider, and Heinz Spindler, Vector bundles on complex projective spaces, Progress in Mathematics, vol. 3, Birkhäuser, Boston, Mass., 1980. MR 561910
- [Orl] D. O. Orlov, Projective bundles, monoidal transformations, and derived categories of coherent sheaves, Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 4, 852–862 (Russian, with Russian summary); English transl., Russian Acad. Sci. Izv. Math. 41 (1993), no. 1, 133–141. MR 1208153, https://doi.org/10.1070/IM1993v041n01ABEH002182
- [Pri] Stewart B. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1970), 39–60. MR 265437, https://doi.org/10.1090/S0002-9947-1970-0265437-8
- [Rao] Prabhakar Rao, Liaison equivalence classes, Math. Ann. 258 (1981/82), no. 2, 169–173. MR 641822, https://doi.org/10.1007/BF01450532
- [Sch] Frank-Olaf Schreyer, Small fields in constructive algebraic geometry, Moduli of vector bundles (Sanda, 1994; Kyoto, 1994) Lecture Notes in Pure and Appl. Math., vol. 179, Dekker, New York, 1996, pp. 221–228. MR 1397991
- [Swa] Richard G. Swan, 𝐾-theory of quadric hypersurfaces, Ann. of Math. (2) 122 (1985), no. 1, 113–153. MR 799254, https://doi.org/10.2307/1971371
- [Wal] C. Walter: Algebraic cohomology methods for the normal bundle of algebraic space curves. Preprint (1990).
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 14F05, 14Q20, 16E05
Retrieve articles in all journals with MSC (2000): 14F05, 14Q20, 16E05
Additional Information
David Eisenbud
Affiliation:
Department of Mathematics, University of California Berkeley, Berkeley, California 94720
Email:
eisenbud@math.berkeley.edu
Gunnar Fløystad
Affiliation:
Mathematisk Institutt, Johs. Brunsgt. 12, N-5008 Bergen, Norway
Email:
gunnar@mi.uib.no
Frank-Olaf Schreyer
Affiliation:
FB Mathematik, Universität Bayreuth D-95440 Bayreuth, Germany
Email:
schreyer@btm8x5.mat.uni-bayreuth.de
DOI:
https://doi.org/10.1090/S0002-9947-03-03291-4
Received by editor(s):
December 1, 2001
Published electronically:
July 10, 2003
Additional Notes:
The first and third authors are grateful to the NSF for partial support during the preparation of this paper. The third author wishes to thank MSRI for its hospitality.
Article copyright:
© Copyright 2003
American Mathematical Society