Hyperplane arrangement cohomology and monomials in the exterior algebra
Authors:
David Eisenbud, Sorin Popescu and Sergey Yuzvinsky
Journal:
Trans. Amer. Math. Soc. 355 (2003), 4365-4383
MSC (2000):
Primary 15A75, 52C35, 55N45; Secondary 55N99, 14Q99
DOI:
https://doi.org/10.1090/S0002-9947-03-03292-6
Published electronically:
July 10, 2003
MathSciNet review:
1986506
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show that if is the complement of a complex hyperplane arrangement, then the homology of
has linear free resolution as a module over the exterior algebra on the first cohomology of
. We study invariants of
that can be deduced from this resolution. A key ingredient is a result of Aramova, Avramov, and Herzog (2000) on resolutions of monomial ideals in the exterior algebra. We give a new conceptual proof of this result.
- [AAH] Annetta Aramova, Luchezar L. Avramov, and Jürgen Herzog, Resolutions of monomial ideals and cohomology over exterior algebras, Trans. Amer. Math. Soc. 352 (2000), no. 2, 579–594. MR 1603874, https://doi.org/10.1090/S0002-9947-99-02298-9
- [AHH] Annetta Aramova, Jürgen Herzog, and Takayuki Hibi, Squarefree lexsegment ideals, Math. Z. 228 (1998), no. 2, 353–378. MR 1630500, https://doi.org/10.1007/PL00004621
- [BCP] Dave Bayer, Hara Charalambous, and Sorin Popescu, Extremal Betti numbers and applications to monomial ideals, J. Algebra 221 (1999), no. 2, 497–512. MR 1726711, https://doi.org/10.1006/jabr.1999.7970
- [BP] J. Scott Provan and Louis J. Billera, Decompositions of simplicial complexes related to diameters of convex polyhedra, Math. Oper. Res. 5 (1980), no. 4, 576–594. MR 593648, https://doi.org/10.1287/moor.5.4.576
- [Bjö1] Anders Björner, On the homology of geometric lattices, Algebra Universalis 14 (1982), no. 1, 107–128. MR 634422, https://doi.org/10.1007/BF02483913
- [Bjö2] Anders Björner, The homology and shellability of matroids and geometric lattices, Matroid applications, Encyclopedia Math. Appl., vol. 40, Cambridge Univ. Press, Cambridge, 1992, pp. 226–283. MR 1165544, https://doi.org/10.1017/CBO9780511662041.008
- [BZ] Anders Björner and Günter M. Ziegler, Combinatorial stratification of complex arrangements, J. Amer. Math. Soc. 5 (1992), no. 1, 105–149. MR 1119198, https://doi.org/10.1090/S0894-0347-1992-1119198-9
- [Bo] Béla Bollobás, Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer-Verlag, New York, 1998. MR 1633290
- [BH1] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- [BH2] Winfried Bruns and Jürgen Herzog, On multigraded resolutions, Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 2, 245–257. MR 1341789, https://doi.org/10.1017/S030500410007362X
- [CS] Daniel C. Cohen and Alexander I. Suciu, Characteristic varieties of arrangements, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 1, 33–53. MR 1692519, https://doi.org/10.1017/S0305004199003576
- [Cr] Henry H. Crapo, A higher invariant for matroids, J. Combinatorial Theory 2 (1967), 406–417. MR 215744
- [ER] John A. Eagon and Victor Reiner, Resolutions of Stanley-Reisner rings and Alexander duality, J. Pure Appl. Algebra 130 (1998), no. 3, 265–275. MR 1633767, https://doi.org/10.1016/S0022-4049(97)00097-2
- [Ei] David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960
- [ES] D. Eisenbud, F.-O. Schreyer: Sheaf Cohomology and Free Resolutions over Exterior Algebras, preprint math.AG/0005055.
- [ESV] Hélène Esnault, Vadim Schechtman, and Eckart Viehweg, Cohomology of local systems on the complement of hyperplanes, Invent. Math. 109 (1992), no. 3, 557–561. MR 1176205, https://doi.org/10.1007/BF01232040
- [Fa] Michael Falk, Arrangements and cohomology, Ann. Comb. 1 (1997), no. 2, 135–157. MR 1629681, https://doi.org/10.1007/BF02558471
- [GS] D. Grayson, M. Stillman: Macaulay2, a software system devoted to supporting research in algebraic geometry and commutative algebra. Contact the authors, or download from ftp://ftp.math.uiuc.edu/Macaulay2.
- [Ho1] M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. MR 304376, https://doi.org/10.2307/1970791
- [Ho2] Melvin Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes, Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975), Dekker, New York, 1977, pp. 171–223. Lecture Notes in Pure and Appl. Math., Vol. 26. MR 0441987
- [LY] Anatoly Libgober and Sergey Yuzvinsky, Cohomology of the Orlik-Solomon algebras and local systems, Compositio Math. 121 (2000), no. 3, 337–361. MR 1761630, https://doi.org/10.1023/A:1001826010964
- [MT] William S. Massey and Lorenzo Traldi, On a conjecture of K. Murasugi, Pacific J. Math. 124 (1986), no. 1, 193–213. MR 850676
- [MS] Daniel Matei and Alexander I. Suciu, Cohomology rings and nilpotent quotients of real and complex arrangements, Arrangements—Tokyo 1998, Adv. Stud. Pure Math., vol. 27, Kinokuniya, Tokyo, 2000, pp. 185–215. MR 1796900, https://doi.org/10.2969/aspm/02710185
- [Mi] J. Milnor: Isotopy of links, in Algebraic geometry and topology. A symposium in honor of S. Lefschetz, pp. 280-306. Princeton University Press, Princeton, N. J., 1957. MR 19:1070c
- [Mu] Mircea Mustaţǎ, Local cohomology at monomial ideals, J. Symbolic Comput. 29 (2000), no. 4-5, 709–720. Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998). MR 1769662, https://doi.org/10.1006/jsco.1999.0302
- [OS] Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167–189. MR 558866, https://doi.org/10.1007/BF01392549
- [OT] Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488
- [Pr] J. S. Provan: Decompositions, shellings, and diameters of simplicial complexes and convex polyhedra, Thesis, Cornell Univ., Ithaca, NY, 1977.
- [Rö] Tim Römer, Generalized Alexander duality and applications, Osaka J. Math. 38 (2001), no. 2, 469–485. MR 1833633
- [STV] Vadim Schechtman, Hiroaki Terao, and Alexander Varchenko, Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, J. Pure Appl. Algebra 100 (1995), no. 1-3, 93–102. MR 1344845, https://doi.org/10.1016/0022-4049(95)00014-N
- [St1] Richard P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1453579
- [St2] Richard P. Stanley, Cohen-Macaulay rings and constructible polytopes, Bull. Amer. Math. Soc. 81 (1975), 133–135. MR 364231, https://doi.org/10.1090/S0002-9904-1975-13670-6
- [Te]
N. Terai: Generalization of Eagon-Reiner theorem and
-vectors of graded rings, preprint 1997.
- [Ya] Kohji Yanagawa, Alexander duality for Stanley-Reisner rings and squarefree 𝐍ⁿ-graded modules, J. Algebra 225 (2000), no. 2, 630–645. MR 1741555, https://doi.org/10.1006/jabr.1999.8130
- [Yu] Sergey Yuzvinsky, Cohomology of the Brieskorn-Orlik-Solomon algebras, Comm. Algebra 23 (1995), no. 14, 5339–5354. MR 1363606, https://doi.org/10.1080/00927879508825535
- [Zi] Günter M. Ziegler, On the difference between real and complex arrangements, Math. Z. 212 (1993), no. 1, 1–11. MR 1200161, https://doi.org/10.1007/BF02571638
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 15A75, 52C35, 55N45, 55N99, 14Q99
Retrieve articles in all journals with MSC (2000): 15A75, 52C35, 55N45, 55N99, 14Q99
Additional Information
David Eisenbud
Affiliation:
Department of Mathematics, University of California Berkeley, Berkeley, California 94720
Email:
de@msri.org
Sorin Popescu
Affiliation:
Department of Mathematics, SUNY at Stony Brook, Stony Brook, New York 11794
Email:
sorin@math.sunysb.edu
Sergey Yuzvinsky
Affiliation:
Department of Mathematics, University of Oregon, Eugene, Oregon 97403
Email:
yuz@math.uoregon.edu
DOI:
https://doi.org/10.1090/S0002-9947-03-03292-6
Received by editor(s):
April 1, 2001
Published electronically:
July 10, 2003
Additional Notes:
The first two authors are grateful to the NSF for support during the preparation of this work. The authors would like to thank the Mathematical Sciences Research Institute in Berkeley for its support while part of this paper was being written
Article copyright:
© Copyright 2003
American Mathematical Society