Hyperplane arrangement cohomology and monomials in the exterior algebra
HTML articles powered by AMS MathViewer
- by David Eisenbud, Sorin Popescu and Sergey Yuzvinsky
- Trans. Amer. Math. Soc. 355 (2003), 4365-4383
- DOI: https://doi.org/10.1090/S0002-9947-03-03292-6
- Published electronically: July 10, 2003
- PDF | Request permission
Abstract:
We show that if $X$ is the complement of a complex hyperplane arrangement, then the homology of $X$ has linear free resolution as a module over the exterior algebra on the first cohomology of $X$. We study invariants of $X$ that can be deduced from this resolution. A key ingredient is a result of Aramova, Avramov, and Herzog (2000) on resolutions of monomial ideals in the exterior algebra. We give a new conceptual proof of this result.References
- Annetta Aramova, Luchezar L. Avramov, and Jürgen Herzog, Resolutions of monomial ideals and cohomology over exterior algebras, Trans. Amer. Math. Soc. 352 (2000), no. 2, 579–594. MR 1603874, DOI 10.1090/S0002-9947-99-02298-9
- Annetta Aramova, Jürgen Herzog, and Takayuki Hibi, Squarefree lexsegment ideals, Math. Z. 228 (1998), no. 2, 353–378. MR 1630500, DOI 10.1007/PL00004621
- Dave Bayer, Hara Charalambous, and Sorin Popescu, Extremal Betti numbers and applications to monomial ideals, J. Algebra 221 (1999), no. 2, 497–512. MR 1726711, DOI 10.1006/jabr.1999.7970
- J. Scott Provan and Louis J. Billera, Decompositions of simplicial complexes related to diameters of convex polyhedra, Math. Oper. Res. 5 (1980), no. 4, 576–594. MR 593648, DOI 10.1287/moor.5.4.576
- Anders Björner, On the homology of geometric lattices, Algebra Universalis 14 (1982), no. 1, 107–128. MR 634422, DOI 10.1007/BF02483913
- Anders Björner, The homology and shellability of matroids and geometric lattices, Matroid applications, Encyclopedia Math. Appl., vol. 40, Cambridge Univ. Press, Cambridge, 1992, pp. 226–283. MR 1165544, DOI 10.1017/CBO9780511662041.008
- Anders Björner and Günter M. Ziegler, Combinatorial stratification of complex arrangements, J. Amer. Math. Soc. 5 (1992), no. 1, 105–149. MR 1119198, DOI 10.1090/S0894-0347-1992-1119198-9
- Béla Bollobás, Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer-Verlag, New York, 1998. MR 1633290, DOI 10.1007/978-1-4612-0619-4
- Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 1251956
- Winfried Bruns and Jürgen Herzog, On multigraded resolutions, Math. Proc. Cambridge Philos. Soc. 118 (1995), no. 2, 245–257. MR 1341789, DOI 10.1017/S030500410007362X
- Daniel C. Cohen and Alexander I. Suciu, Characteristic varieties of arrangements, Math. Proc. Cambridge Philos. Soc. 127 (1999), no. 1, 33–53. MR 1692519, DOI 10.1017/S0305004199003576
- Henry H. Crapo, A higher invariant for matroids, J. Combinatorial Theory 2 (1967), 406–417. MR 215744, DOI 10.1016/S0021-9800(67)80051-6
- John A. Eagon and Victor Reiner, Resolutions of Stanley-Reisner rings and Alexander duality, J. Pure Appl. Algebra 130 (1998), no. 3, 265–275. MR 1633767, DOI 10.1016/S0022-4049(97)00097-2
- David Eisenbud, Commutative algebra, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, 1995. With a view toward algebraic geometry. MR 1322960, DOI 10.1007/978-1-4612-5350-1
- D. Eisenbud, F.-O. Schreyer: Sheaf Cohomology and Free Resolutions over Exterior Algebras, preprint arXiv:math.AG/0005055.
- Hélène Esnault, Vadim Schechtman, and Eckart Viehweg, Cohomology of local systems on the complement of hyperplanes, Invent. Math. 109 (1992), no. 3, 557–561. MR 1176205, DOI 10.1007/BF01232040
- Michael Falk, Arrangements and cohomology, Ann. Comb. 1 (1997), no. 2, 135–157. MR 1629681, DOI 10.1007/BF02558471
- D. Grayson, M. Stillman: Macaulay2, a software system devoted to supporting research in algebraic geometry and commutative algebra. Contact the authors, or download from ftp://ftp.math.uiuc.edu/Macaulay2.
- M. Hochster, Rings of invariants of tori, Cohen-Macaulay rings generated by monomials, and polytopes, Ann. of Math. (2) 96 (1972), 318–337. MR 304376, DOI 10.2307/1970791
- Melvin Hochster, Cohen-Macaulay rings, combinatorics, and simplicial complexes, Ring theory, II (Proc. Second Conf., Univ. Oklahoma, Norman, Okla., 1975) Lecture Notes in Pure and Appl. Math., Vol. 26, Dekker, New York, 1977, pp. 171–223. MR 0441987
- Anatoly Libgober and Sergey Yuzvinsky, Cohomology of the Orlik-Solomon algebras and local systems, Compositio Math. 121 (2000), no. 3, 337–361. MR 1761630, DOI 10.1023/A:1001826010964
- William S. Massey and Lorenzo Traldi, On a conjecture of K. Murasugi, Pacific J. Math. 124 (1986), no. 1, 193–213. MR 850676, DOI 10.2140/pjm.1986.124.193
- Daniel Matei and Alexander I. Suciu, Cohomology rings and nilpotent quotients of real and complex arrangements, Arrangements—Tokyo 1998, Adv. Stud. Pure Math., vol. 27, Kinokuniya, Tokyo, 2000, pp. 185–215. MR 1796900, DOI 10.2969/aspm/02710185
- Saunders MacLane and O. F. G. Schilling, Infinite number fields with Noether ideal theories, Amer. J. Math. 61 (1939), 771–782. MR 19, DOI 10.2307/2371335
- Mircea Mustaţǎ, Local cohomology at monomial ideals, J. Symbolic Comput. 29 (2000), no. 4-5, 709–720. Symbolic computation in algebra, analysis, and geometry (Berkeley, CA, 1998). MR 1769662, DOI 10.1006/jsco.1999.0302
- Peter Orlik and Louis Solomon, Combinatorics and topology of complements of hyperplanes, Invent. Math. 56 (1980), no. 2, 167–189. MR 558866, DOI 10.1007/BF01392549
- Peter Orlik and Hiroaki Terao, Arrangements of hyperplanes, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 300, Springer-Verlag, Berlin, 1992. MR 1217488, DOI 10.1007/978-3-662-02772-1
- J. S. Provan: Decompositions, shellings, and diameters of simplicial complexes and convex polyhedra, Thesis, Cornell Univ., Ithaca, NY, 1977.
- Tim Römer, Generalized Alexander duality and applications, Osaka J. Math. 38 (2001), no. 2, 469–485. MR 1833633
- Vadim Schechtman, Hiroaki Terao, and Alexander Varchenko, Local systems over complements of hyperplanes and the Kac-Kazhdan conditions for singular vectors, J. Pure Appl. Algebra 100 (1995), no. 1-3, 93–102. MR 1344845, DOI 10.1016/0022-4049(95)00014-N
- Richard P. Stanley, Combinatorics and commutative algebra, 2nd ed., Progress in Mathematics, vol. 41, Birkhäuser Boston, Inc., Boston, MA, 1996. MR 1453579
- Richard P. Stanley, Cohen-Macaulay rings and constructible polytopes, Bull. Amer. Math. Soc. 81 (1975), 133–135. MR 364231, DOI 10.1090/S0002-9904-1975-13670-6
- N. Terai: Generalization of Eagon-Reiner theorem and $h$-vectors of graded rings, preprint 1997.
- Kohji Yanagawa, Alexander duality for Stanley-Reisner rings and squarefree $\mathbf N^n$-graded modules, J. Algebra 225 (2000), no. 2, 630–645. MR 1741555, DOI 10.1006/jabr.1999.8130
- Sergey Yuzvinsky, Cohomology of the Brieskorn-Orlik-Solomon algebras, Comm. Algebra 23 (1995), no. 14, 5339–5354. MR 1363606, DOI 10.1080/00927879508825535
- Günter M. Ziegler, On the difference between real and complex arrangements, Math. Z. 212 (1993), no. 1, 1–11. MR 1200161, DOI 10.1007/BF02571638
Bibliographic Information
- David Eisenbud
- Affiliation: Department of Mathematics, University of California Berkeley, Berkeley, California 94720
- MR Author ID: 62330
- ORCID: 0000-0002-5418-5579
- Email: de@msri.org
- Sorin Popescu
- Affiliation: Department of Mathematics, SUNY at Stony Brook, Stony Brook, New York 11794
- Email: sorin@math.sunysb.edu
- Sergey Yuzvinsky
- Affiliation: Department of Mathematics, University of Oregon, Eugene, Oregon 97403
- Email: yuz@math.uoregon.edu
- Received by editor(s): April 1, 2001
- Published electronically: July 10, 2003
- Additional Notes: The first two authors are grateful to the NSF for support during the preparation of this work. The authors would like to thank the Mathematical Sciences Research Institute in Berkeley for its support while part of this paper was being written
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 4365-4383
- MSC (2000): Primary 15A75, 52C35, 55N45; Secondary 55N99, 14Q99
- DOI: https://doi.org/10.1090/S0002-9947-03-03292-6
- MathSciNet review: 1986506