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ON THE DIOPHANTINE EQUATION Gn(x) = Gm(P (x)):
HIGHER-ORDER RECURRENCES

CLEMENS FUCHS, ATTILA PETHŐ, AND ROBERT F. TICHY

Dedicated to Wolfgang M. Schmidt on the occasion of his 70th birthday.

Abstract. Let K be a field of characteristic 0 and let (Gn(x))∞n=0 be a
linear recurring sequence of degree d in K[x] defined by the initial terms
G0, . . . , Gd−1 ∈ K[x] and by the difference equation

Gn+d(x) = Ad−1(x)Gn+d−1(x) + · · ·+A0(x)Gn(x), for n ≥ 0,

with A0, . . . , Ad−1 ∈ K[x]. Finally, let P (x) be an element of K[x]. In this
paper we are giving fairly general conditions depending only on G0, . . . , Gd−1,
on P , and on A0, . . . , Ad−1 under which the Diophantine equation

Gn(x) = Gm(P (x))

has only finitely many solutions (n,m) ∈ Z2, n,m ≥ 0. Moreover, we are
giving an upper bound for the number of solutions, which depends only on d.
This paper is a continuation of the work of the authors on this equation in the
case of second-order linear recurring sequences.

1. Introduction

Let K denote a field of characteristic 0. Without loss of generality we may assume
that this field is algebraically closed. Let A0, . . . , Ad−1, G0, . . . , Gd−1 ∈ K[x] and
let the sequence of polynomials (Gn(x))∞n=0 be defined by the d-th order linear
recurring sequence

(1.1) Gn+d(x) = Ad−1(x)Gn+d−1(x) + · · ·+A0(x)Gn(x), for n ≥ 0.

Let
Q(T ) = T d −Ad−1(x)T d−1 − · · · −A0(x) ∈ K[x][T ]

denote the characteristic polynomial of the sequence (Gn(x))∞n=0 and letD(x) be the
discriminant of Q(T ). It is clear that D(x) ∈ K[x]. Moreover, let α1(x), . . . , αd(x)
denote the roots of the characteristic polynomial Q(T ) in the splitting field K(x)
of Q(T ). The field K(x) is a finite extension of K(x) of degree at most d!.

Assuming that Q(T ) has no multiple roots, i.e., D(x) 6= 0, it is well known
that (Gn(x))∞n=0 has a nice “analytic” representation. More precisely, there exist
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elements g1(x), . . . , gd(x) ∈ K(x) such that

(1.2) Gn(x) = g1(x)α1(x)n + · · ·+ gd(x)αd(x)n

holds for all n ≥ 0.
(Gn(x))∞n=0 is called nondegenerate, if no quotient αi(x)/αj(x), 1 ≤ i < j ≤ d is

equal to a root of unity and it is called degenerate otherwise.
Many diophantine equations involving the recurrence (Gn(x))∞n=0 were studied

previously. For example, let us consider the equation

(1.3) Gn(x) = s(x),

where s(x) ∈ K[x] is given. We denote by N(s(x)) the number of integers n for
which (1.3) holds. From the theorem of Skolem, Mahler and Lech [13] it follows
that N(s(x)) is finite for every s(x) provided that the sequence is nondegenerate
and that also α1(x), . . . , αd(x) are not equal to a root of unity. Evertse, Schlickewei
and Schmidt [9] proved that

(1.4) N(s(x)) ≤ e(6d)3d

under the same conditions as before. This is a direct consequence of the Main
Theorem on S-unit equations over fields of characteristic 0, which we will state
later on.

We mention that for d = 2, Schlickewei [17] had previously established an ab-
solute bound for N(s(x)). His bound was substantially improved by Beukers and
Schlickewei [3] who showed that N(s(x)) ≤ 61. Very recently, Schmidt [18] ob-
tained the remarkable result that for arbitrary nondegenerate complex recurrence
sequences of order d one has N(a) ≤ C(d), where a ∈ C and C(d) depends only
(and in fact triply exponentially) on d.

Recently, the authors used new developments on S-unit equations over fields of
characteristic 0 due to Evertse, Schlickewei and Schmidt (cf. [9]) to handle the equa-
tion Gn(x) = Gm(P (x)) for second-order linear recurring sequences (Gn(x))∞n=0.
Our result was: Let p, q,G0, G1, P ∈ K[x], degP ≥ 1 and (Gn(x))∞n=0 be defined
by the second-order linear recurrence

Gn+2(x) = p(x)Gn+1(x) + q(x)Gn(x), n ≥ 0.

Assume that the following conditions are satisfied: 2 deg p > deg q ≥ 0 and

degG1 > degG0 + deg p ≥ 0, or
degG1 < degG0 + deg q − deg p.

Then there are at most e1018
pairs of integers (n,m) with n,m ≥ 0, n 6= m such

that

Gn(x) = Gm(P (x))

holds. We showed a second result in our paper: Let ∆(x) = p(x)2 + 4q(x). Assume
that

(1) deg ∆ 6= 0,
(2) degP ≥ 2,
(3) gcd(p, q) = 1 and
(4) gcd(2G1 −G0p,∆) = 1.
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Then there are at most e1018
pairs of integers (n,m) with n,m ≥ 0 such that

Gn(x) = Gm(P (x))

holds.
The motivation for this equation was the following observation, which shows that

the problem is nontrivial: Consider the Chebyshev polynomials of the first kind,
which are defined by

Tn(x) = cos(n arccosx).

It is well known that they satisfy the following second-order recurring relation:

T0(x) = 1, T1(x) = x,

Tn+2(x) = 2xTn+1(x) − Tn(x).

It is also well known and in fact easy to prove that

T2n(x) = Tn(2x2 − 1).

This example shows that some further conditions are needed.
By using function field analogs of S-unit equations, we were also able to give an

upper bound for the cardinality of the set

{(n,m) ∈ N |n 6= m, ∃c ∈ K∗ such thatGn(x) = cGm(P (x))}.
(Here c may vary with n,m.) Under the same assumptions as above we showed:
The number of pairs of integers (n,m) with n,m ≥ 0, n 6= m for which there exists
c ∈ K∗ with

Gn(x) = cGm(P (x))

is at most

C(p, q, P ) = 1028 · log(C1 max{2 deg p, deg q}) · (4e)8C1 deg q · 74C1 deg q,

where C1 = 2(degP + 1).
The first author gave suitable extensions of the above results for third-order linear

recurring sequences (cf. [10], [11]). He proved: Let a, b, c,G0, G1, G2, P ∈ K[x],
degP ≥ 1 and (Gn(x))∞n=0 be defined by the third-order linear recurring sequence

(1.5) Gn+3(x) = a(x)Gn+2(x) + b(x)Gn+1(x) + c(x)Gn(x), for n ≥ 0.

Assume that the following conditions are satisfied: 3 deg a > deg c ≥ 0, 2 deg a >
deg b and deg a+ deg c > 2 deg b. Moreover, assume

degG2 > degG1 + deg a ≥ 0, and
degG1 > degG0 + 1

2 (deg c− deg a).

Then there are at most e1024
pairs of integers (n,m) with n,m ≥ 0, n 6= m such

that
Gn(x) = Gm(P (x))

holds.
Moreover, we have: Let a, b, c,G0, G1, G2, P ∈ K[x] and (Gn(x))∞n=0 be defined

by (1.5). Assume that
(1) degD 6= 0, deg q 6= 0,
(2) degP ≥ 2,
(3) gcd(c,D) = 1, gcd(p, q) = 1,
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(4) gcd(G2− 2
3aG1− 2

9a
2G0−bG0, q) = 1, gcd(G2

2− 4
3 bG2G0− 1

3bG
2
1+ 4

9b
2G2

0, D)
= 1, and

(5) gcd(a, 27c2 − 4b3) > 1,
where p, q are the coefficients of the characteristic polynomial of (1.5) in reduced
form and D is the discriminant. Then there are at most e1024

pairs of integers
(n,m) with n,m ≥ 0 such that

Gn(x) = Gm(P (x))

holds.
It is the aim of this paper to present extensions of the results for linear recurrences

of arbitrary order.

2. General results

To establish our first main result we need some preparations. By considering the
initial terms of the recurrence we obtain the system of linear equations

(2.1) Gj(x) = g1(x)α1(x)j + · · ·+ gd(x)αd(x)j , j = 0, . . . , d− 1

for the algebraic functions g1(x), . . . , gd(x). Let ∆(x) denote the determinant of
this system. Then ∆(x) =

∏
1≤i<j≤d(αj(x) − αi(x)); hence D(x) = ∆(x)2.

Define ~A = (A0, . . . , Ad−1), ~G = (G0, . . . , Gd−1) and ~αj = (1, αj , . . . , αd−1
j )T ,

j = 1, . . . , d. Applying Cramer’s rule for the system of equations (2.1) we obtain

∆(x)g1(x) = det(~GT (x), ~α2(x), . . . , ~αd(x)).

It is easy to see by induction that

det(~GT , ~α2, . . . , ~αd) =

(
d−1∑
i=0

(−1)d−1−iGd−1−iSi(α2, . . . , αd)

) ∏
2≤i<j≤d

(αj − αi),

where Si(α2, . . . , αd), i = 0, . . . , d − 1 denotes the i-th elementary symmetrical
polynomial. Using Vieta’s formulae we obtain

(2.2) g1(x)α1(x)
d∏
i=2

(αi(x) − α1(x)) =
d−1∑
i=0

Li( ~A, ~G)αi1(x),

with some polynomial Li( ~A, ~G) ∈ Q[ ~A, ~G], i = 0, . . . , d − 1. Since (2.1) is sym-
metrical in α1(x), . . . , αd(x), the same relation holds if we replace the index 1 with
another index 1 ≤ j ≤ d.

Now let

R = Rd( ~A, ~G) =
d∏
j=1

(
d−1∑
i=0

Li( ~A, ~G)αij

)
.

By the theorem on symmetrical polynomials R( ~A, ~G) ∈ Q[ ~A, ~G]. To have some
impression how complicated R is, we computed it for d = 3:

R3( ~A, ~G) = −G3
2 + (−A1G0 + 2A2G1)G2

2

+((A1 −A2
2)G2

1 + (−3A0 +A1A2)G0G1 −A0G
2
0A2)G2

+(−A0 −A1A2)G3
1 + (A0A2 +A2

1)G0G
2
1 − 2A0G1A1G

2
0

+A2
0G

3
0.
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Now we are in the position to state our first main result, which is a suitable
analogue of the theorems in [12] for the number of solutions of

(2.3) Gn(x) = cGm(P (x)),

where c ∈ K∗ = K\{0} is variable, for a linear recurring sequence (Gn(x))∞n=0 of
arbitrary large order.

Theorem 2.1. Assume that the d-th order (d ≥ 2) linear recurring sequence
(Gn(x))∞n=0 and the polynomial P ∈ K[x] satisfy the following conditions:

(i) None of the roots and the quotients of distinct roots of the characteristic
polynomial of (Gn(x))∞n=0 is an element of K∗,

(ii) degP ≥ 2 and degD ≥ 1,
(iii) gcd(D,A0) = 1, and
(iv) gcd(D,R( ~A, ~G)) = 1.

Then equation (2.3) has at most

C(d,A0, D, P ) := e(6d)4d
(

log
(
d2d2

degD(degP + 1)
))2d2

(2ed)30d3d!2 degA0 degP

solutions (n,m) ∈ Z2 with n,m ≥ 0, n 6= m.

Remark 2.2. Observe that the conditions in Theorem 2.1 are suitable generaliza-
tions of the conditions of Theorem 3 in [12]. Moreover, observe that the structure of
the bound is similar to that in [12], especially the dependence on degD and degP .

It is also possible to get the conclusions from above for other types of assump-
tions.

Theorem 2.3. Assume that the d-th order (d ≥ 2) linear recurring sequence
(Gn(x))∞n=0 and the polynomial P ∈ K[x] satisfy the following conditions:

(i) None of the roots and the quotients of distinct roots of the characteristic
polynomial of (Gn(x))∞n=0 is an element of K∗,

(ii) degP ≥ 1, and degD ≥ 1,
(iii) degA0 ≥ 1, R( ~A, ~G) 6= 0, and
(iv) the set of zeroes of A0 is not equal to that of A0(P ).

Then equation (2.3) has at most C(d,A0, D, P ) solutions (n,m) ∈ Z2 with n,m ≥
0, n 6= m.

The following proposition characterizes those polynomials A0, P for which con-
dition (iv) of the last theorem does not hold.

Proposition 2.4. Let A0 and P be nonconstant elements in K[x]. Assume that
A0 and A0(P ) have the same roots and let k be the number of different roots of A0.
Then there exist a, b, c ∈ K, a, c 6= 0 such that if k = 1, then

A0(x) = a(x− b)degA0 and P (x) = c(x− b)degP + b;

if k ≥ 2, then either P (x) = x or P (x) = ax+ b, a 6= 1 and in this case,

A0(x) = c

(
x+

b

a− 1

)s r∏
i=1

`−1∏
j=0

(
x− ajxi − b

aj − 1
a− 1

)
,

where x1, . . . , xr ∈ K are all different and a is a root of unity of order `.
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For the special case of the equation

(2.4) Gn(x) = Gm(P (x))

we can even show more.

Theorem 2.5. Assume that the d-th order (d ≥ 2) linear recurring sequence
(Gn(x))∞n=0 and the polynomial P ∈ K[x] satisfy the following conditions:

(i) None of the roots and the quotients of distinct roots of the characteristic
polynomial of (Gn(x))∞n=0 is a root of unity,

(ii) degP ≥ 2 and degD ≥ 1,
(iii) gcd(D,A0) = 1, and
(iv) gcd(D,R( ~A, ~G)) = 1.

Then equation (2.4) has at most

e(12d)6d

solutions (n,m) ∈ Z2 with n,m ≥ 0, n 6= m.

Remark 2.6. Observe that we can prove an upper bound for the number of solutions
of (2.4) which does only depend on d.

Moreover, as an analogue of Theorem 2.3, we get:

Theorem 2.7. Assume that the d-th order (d ≥ 2) linear recurring sequence
(Gn(x))∞n=0 and the polynomial P ∈ K[x] satisfy the following conditions:

(i) None of the roots and the quotients of distinct roots of the characteristic
polynomial of (Gn(x))∞n=0 is a root of unity,

(ii) degP ≥ 1, and degD ≥ 1,
(iii) degA0 ≥ 1, R( ~A, ~G) 6= 0, and
(iv) the set of zeroes of A0 is not equal to that of A0(P ).

Then equation (2.4) has at most

e(12d)6d

solutions (n,m) ∈ Z2 with n,m ≥ 0, n 6= m.

Finally, we study a special instance of the above problem. Let (Gn(x))∞n=0 be
defined by (1.1) and let the initial polynomials be given by

G0(x) = · · · = Gd−2(x) = 0 and Gd−1(x) = 1.

Then we have

Gn(x) =
d∑
i=1

αni (x)
Q′(αi(x))

,

where
Q(T ) = T d −Ad−1(x)T d−1 − · · · −A0(x)

denotes the characteristic polynomial and ′ means differentiation with respect to
T . Observe that the discriminant D(x) in this case is given by

D(x) =
d∏
i=1

Q′(αi(x)) =
d∏
j=1

d∏
i=1
i6=j

(αi(x) − αj(x)).
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Applying Theorem 2.1 we get the following consequence:

Corollary 2.8. Let (Gn(x))∞n=0 be defined as above. Assume that (Gn(x))∞n=0 and
the polynomial P ∈ K[x] satisfy the following conditions:

(i) None of the roots and the quotients of distinct roots of the characteristic
polynomial of (Gn(x))∞n=0 is an element of K∗,

(ii) degP ≥ 2 and degD ≥ 1, and
(iii) gcd(D,A0) = 1.

Then we have:
(1) Equation (2.3) has at most

C(d,A0, D, P )

= e(6d)4d
(

log
(
d2d2

degD(degP + 1)
))2d2

(2ed)30d3d!2 degA0 degP

solutions (n,m) ∈ Z2 with n,m ≥ 0, n 6= m.
(2) Equation (2.4) has at most

min{e(12d)6d
, C(d,A0, D, P )}

solutions (n,m) ∈ Z2 with n,m ≥ 0, n 6= m.

Observe that also Theorems 2.3 and 2.7 can be applied to this situation (but
without any simplification of the assumption in general).

3. Auxiliary results

In this section we collect some important theorems which we will need in our
proofs.

Let K be an algebraically closed field of characteristic 0, n ≥ 1 an integer,
α1, . . . , αn elements of K∗ and Γ a finitely generated multiplicative subgroup of
K∗. A solution (x1, . . . , xn) of the so-called weighted unit equation

(3.1) α1x1 + · · ·+ αnxn = 1 in x1, . . . , xn ∈ Γ

is called nondegenerate if

(3.2)
∑
j∈J

αjxj 6= 0 for each nonempty subset J of {1, . . . , n}

and degenerate otherwise. It is clear that if Γ is infinite and if (3.1) has a degenerate
solution, then (3.1) has infinitely many degenerate solutions. For nondegenerate
solutions we have the following result, which is due to Evertse, Schlickewei and
Schmidt [9].

Theorem 3.1 (Evertse, Schlickewei and Schmidt). Let K be a field of characteristic
0, let α1, . . . , αn be nonzero elements of K and let Γ be a multiplicative subgroup of
(K∗)n of rank r. Then the equation

α1x1 + · · ·+ αnxn = 1

has at most
e(6n)3n(r+1)

nondegenerate solutions (x1, . . . , xn) ∈ Γ.
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This theorem is the Main Theorem on S-unit equations over fields of character-
istic 0. It is a generalization and refinement of earlier results due to Evertse and
Győry [6], Evertse [4] and van der Poorten and Schlickewei [14] on the finiteness
of the number of nondegenerate solutions of (3.1). For a general survey on these
equations and their applications we refer to Evertse, Győry, Stewart and Tijdeman
[7].

For the convenience of the reader, we state once more the consequence for the
multiplicity of linear recurring sequences (see introduction, cf. [9]).

Theorem 3.2 (Evertse, Schlickewei and Schmidt). Let (um)m∈Z be a recurring
sequence satisfying

um = g1α
m
1 + · · ·+ gnα

m
n for m ∈ Z,

where α1, . . . , αn ∈ K∗ are distinct such that neither α1, . . . , αn, nor any of the
quotients αi/αj (1 ≤ i < j ≤ n) is a root of unity and where g1, . . . , gn are non-
zero elements of K. Then for every a ∈ K we have

N(a) ≤ e(6n)3n
.

Next we will consider equation (3.1) also over function fields. Let F be an
algebraic function field in one variable with algebraically closed constant field K of
characteristic 0. Thus F is a finite extension of K(t), where t is a transcendental
element of F over K. The field F can be endowed with a set MF of additive
valuations with value group Z for which

K = {0} ∪ {z ∈ F | ν(z) = 0 for each ν in MF }
holds. Let S be a finite subset of MF . An element z of F is called an S-unit if
ν(z) = 0 for all ν ∈ MF \S. The S-units form a multiplicative group, which is
denoted by US . The group US contains K∗ as a subgroup and US/K∗ is finitely
generated. For function fields we have the following result:

Theorem 3.3 (Evertse and Győry). Let F,K, S be as above. Let g be the genus of
F/K, s the cardinality of S, and n ≥ 2 an integer. Then for every α1, . . . , αn ∈ F ∗,
the set of solutions of

α1x1 + · · ·+ αnxn = 1 in x1, . . . , xn ∈ US,(3.3)
with α1x1, . . . , αnxn not all in K(3.4)

is contained in the union of at most

log(g + 2) · (e(n+ 1))(n+1)s+2

(n− 1)-dimensional linear subspaces of Fn.

For deriving this upper bound an effective upper bound of Brownawell and
Masser [2] for the heights of solutions of (3.3) is used. For n = 2 the theorem
gives the upper bound

log(g + 2)(3e)3s+2

for the number of solutions of (3.3). We note that for the case n = 2 Evertse [5]
established an upper bound, which is better and independent of g.

Theorem 3.4 (Evertse). Let F,K, S be as above. For each pair λ, µ in F ∗, the
equation

λx + µy = 1 in x, y ∈ US
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has at most 2 · 72s solutions with λx/(µy) /∈ K. As above, s denotes the cardinality
of S.

We will use the results from above to prove the following proposition:

Proposition 3.5. Let F,K, S be as above. Let g be the genus of F/K, s the
cardinality of S, n ≥ 2 an integer, and α1, . . . , αn ∈ F ∗. Moreover, let Γi ⊂ US, i =
1, . . . , n and U := Γ1 × . . .× Γn. We assume that any given pair (xi, xj) ∈ Γi × Γj
with 1 ≤ i < j ≤ n gives rise to at most k solutions (x1, . . . , xn) of

α1x1 + · · ·+ αnxn = 1 in (x1, . . . , xn) ∈ U ,(3.5)

where
∑
j∈J

αjxj 6= 0 for each nonempty subset J of {1, . . . , n},(3.6)

and that for arbitrary γ1, γ2 ∈ F ∗ there are at most k solutions (x1, . . . , xn) ∈ U
such that there exist indices i 6= j with γ1xi, γ2xj ∈ K∗. Then the number of
solutions of (3.5) with (3.6) can by bounded by

A(n, k) = knen
2

(log(g + 2))n−2 (e(n+ 1))(n−1)(n+1)(s+1).

Finally, we need some results from the theory of algebraic function fields, which
can be found, for example, in the monograph of Stichtenoth [19]. We will need the
following estimate for the genus of a function field F/K (cf. [19], pp. 130 and 131).

Theorem 3.6 (Castelnuovo’s Inequality). Let F/K be a function field with con-
stant field K. Suppose there are given two subfields F1/K and F2/K of F/K
satisfying

(1) F = F1F2 is the compositum of F1 and F2,
(2) [F : Fi] = ni, and Fi/K has genus gi (i = 1, 2).

Then the genus g of F/K is bounded by

g ≤ n1g1 + n2g2 + (n1 − 1)(n2 − 1).

We mention that Castelnuovo’s Inequality is often sharp, and that, in general,
it cannot be improved.

Moreover, we will use the Hurwitz Genus Formula (cf. [19], p. 88).

Theorem 3.7 (Hurwitz Genus Formula). Let F/K be an algebraic function field
of genus g and let F ′/F be a finite separable extension. Let K ′ denote the constant
field of F ′ and g′ the genus of F ′/K. Then we have

2g′ − 2 =
[F ′ : F ]
[K ′ : K]

(2g − 2) + deg Diff(F ′/F ).

The Hurwitz Genus Formula is a powerful tool that allows determination of the
genus of F/K in terms of the different of F/K(x) since any function field can be
regarded as a finite extension of a rational function field.

Last we mention some basic facts about the valuation theory in function fields:
Let K be an algebraically closed field of characteristic 0. Let K be a finite extension
of K(x) where x is transcendental over K. For ξ ∈ K define the valuation νξ
such that for Q ∈ K(x) we have Q(x) = (x − ξ)νξ(Q)A(x)/B(x) where A,B are
polynomials with A(ξ)B(ξ) 6= 0. Furthermore, for Q = A/B with A,B ∈ K[x] we
put degQ := degA − degB; thus ν∞ := − deg is a discrete valuation on K(x).
Each of the valuations νξ, ν∞ can be extended in at most [K : K(x)] ways to a
discrete valuation on K and in this way one obtains all discrete valuations on K.
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A valuation on K is called finite if it extends νξ for some ξ ∈ K and infinite if it
extends ν∞. Let us mention that the valuations can be equivalently described by
the concepts of places and valuation rings (cf. [19]).

4. Proof of Proposition 2.4
1

The case when P is linear was treated in Remark 7 of our preceding paper [12].
This is exactly the second part of our assertion. Thus we assume in the sequel that
degP ≥ 2.

Assume that

A0(x) = a

k∏
i=1

(x− ai)ni ,

with pairwise different a1, . . . , ak and with positive n1, . . . , nk. Since the roots of
A0 and of A0(P ) are the same, we have

A0(P (x)) = a

k∏
i=1

(P (x) − ai)ni = a lc(P )degA0

k∏
j=1

(x − aj)mj

with nonzerom1, . . . ,mk and where lc(P ) denotes the leading coefficient of P . From
this we get

P (x)− ai = lc(P )
k∏
j=1

(x − aj)mij ,

for all i = 1, . . . , k, where the mij are nonnegative integers. If we assume that there
exist indices u 6= v with muj ,mvj both > 0, then we get that av − au = const has
a nontrivial divisor, namely x− aj , contradicting the fact that av − au is constant
and different from zero.

Now we proceed as follows: Assume that we have

P (x)− a1 = lc(P )
k∏
j=1

(x− aj)m1j .

There exists j1 such that m1j1 > 0 since degP > 0. From the discussion above this
implies that mij1 = 0 for all i = 2, . . . , k. Now look at

P (x)− a2 = lc(P )
k∏
j=1
j 6=j1

(x− aj)m2j .

Now there exists m2j2 > 0 and we have mij2 = 0 for i = 1, 3, . . . , k, especially
m1j2 = 0. Continuing this we get, because there are k different roots, that there
exists a permutation π of {1, . . . , k} such that

(4.1) P (x)− ai = lc(P )(x− aπ(i))degP , for i = 1, . . . , k.

If k = 1, then A0 = a(x− a1)degA0 and π(1) = 1; hence

P (x) = lc(P )(x − a1)degP + a1

and we obtain the first assertion of the proposition.

1We thank Ákos Pintér for helping us in a former proof of this proposition. The final part of
the present argument was suggested by the anonymous referee, to whom we are also indebted.
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It remains to prove that there are no more possibilities if the degree of P and the
number of distinct zeros of A0 are at least 2. Indeed, if k ≥ 2, then (4.1) implies
that

a2 − a1

lc(P )
= (x− aπ(1))degP − (x − aπ(2))degP .

We introduce a new variable y = x − aπ(2) and put e = aπ(2) − aπ(1), f =
(a2 − a1)/lc(P ), and r = degP . Then (y + e)r − yr = f ; hence

r−1∑
k=0

(
r

k

)
er−kyk = f,

which implies r = 1, e = f . Consequently, degP must be one. �

5. Proof of Proposition 3.5

We prove the assertion by induction on n. The case n = 2 follows easily from
Theorem 3.3 for n = 2. Observe that by our assumptions there are at most k
solutions with α1x1 and α2x2 both in K. Therefore, we have at most

log(g + 2)(3e)3s+2 + k ≤ A(2, k)

solutions (x1, x2) ∈ U .
Now suppose n > 2 and that our claim has been shown for n′ < n. Again by

Theorem 3.3, either α1x1, . . . , αnxn all belong to K∗, which by our assumption is
possible for at most k solutions (x1, . . . , xn), or (x1, . . . , xn) lies in one of at most

log(g + 2) · (e(n+ 1))(n+1)s+2

proper linear subspaces of Fn.
Let V be one of these subspaces, defined by an equation

γ1x1 + · · ·+ γnxn = 0

where γi ∈ F for i = 1, . . . , n. Observe that at least two of the coefficients are
different from zero. Without loss of generality we may assume that γ1 6= 0 and that
γ1 = 1, i.e.,

x1 + γ2x2 + · · ·+ γnxn = 0.
Subtracting this equation from our S-unit equation (3.5) under consideration gives

(α2 − γ2α1)x2 + · · ·+ (αn − γnα1)xn = 1.

This is again an S-unit equation but now with n − 1 variables. We write for the
above equation ∑

i∈I
δixi = 1

where I is a subset of {2, . . . , n} of cardinality |I| ≥ 1, because otherwise we would
have

α1x1 + · · ·+ αnxn = 0,
a contradiction to (3.5), and where δi 6= 0 for i ∈ I. Let J be a nonempty subset
of I and consider those solutions in U ∩ V for which

(5.1)
∑
i∈J

δixi = 0,

but no proper nonempty subsum of (5.1) vanishes. Thus 1 ≤ |J | ≤ n− 1. We have
to distinguish two cases, depending on whether |J | = 1 or |J | ≥ 2.
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Case 1. Let J = {u} with 2 ≤ u ≤ n. In this case the above equation reduces to

(αu − γuα1)xu = 1,

with αu 6= γuα1. Therefore, we get

xu = (αu − γuα1)−1,

and substituting this into (3.5) finally yields

(5.2)
n∑
i=1
i6=u

αi
(1 − (αu − γuα1)−1αu)

xi = 1.

Observe that the denominator is different from 0, because otherwise we would have

n∑
i=1
i6=u

αixi = 0,

leading to a contradiction to assumption (3.6). Equation (5.2) is an S-unit equation
with n− 1 variables. By induction, we can conclude that this equation has at most
A(n − 1, k) solutions such that no nontrivial subsum vanishes, and since each of
these solutions gives rise to at most k solutions of (3.5), we conclude that we get at
most kA(n − 1, k) solutions (x1, . . . , xn) in this case. Observe that any vanishing
subsum of equation (5.2) would immediately lead to a vanishing subsum of our
original equation, and thus we do not have to take them into account.

Case 2. Now we can assume that |J | ≥ 2 and in this situation we can at once use
the induction hypothesis. Thus we conclude that (5.1) has at most A(n − 1, k)
solutions, where no subsum vanishes. Observe that the vanishing subsums of∑

i∈I
δixi = 1

are taken into account by the different choices of J . Since we know by our assump-
tions that each of these solutions gives rise to at most k solutions of our original
problem, we get at most kA(n− 1, k) solutions (x1, . . . , xn) also in this case.

By consideration of the possible subsets J of I, we see that each subspace V
contains at most 2nkA(n − 1, k) solutions. We still have to multiply this by the
number of subspaces. In this way we obtain a bound

2nkA(n− 1, k) log(g + 2)(e(n+ 1))(n+1)s+2 + k.

This is

2n+1kkn−1e(n−1)2
(log(g + 2))n−3 (en)(n−2)n(s+1) · log(g + 2)(e(n+ 1))(n+1)s+2

≤ knen
2−n+2 (log(g + 2))n−2 · (e(n+ 1))(n−2)(n+1)(s+1)(e(n+ 1))(n+1)(s+1)

≤ A(n, k),

and, therefore, Proposition 3.5 follows. �
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6. Preliminaries and properties of the field of definition

Let (Pn(x))∞n=0 be defined by (1.1). Moreover, let α1(x), . . . , αd(x) as well
as α1(P (x)), . . . , αd(P (x)) denote the roots of the characteristic polynomial of
(Gn(x))∞n=0 and (Gn(P (x))∞n=0 respectively. We will always assume that D(x) 6= 0
(which follows from condition (ii) in all theorems); thus α1(x), . . . , αd(x) are pair-
wise distinct. In the above argument we may replace x by any other element that
is transcendental over K. So, in particular, α1(P (x)), . . . , αd(P (x)) are pairwise
distinct.

Let us define

F = K(x, α1(x), . . . , αd(x), α1(P (x)), . . . , αd(P (x))).

Then F is a finite extension of K(x), i.e., we have an algebraic function field in one
variable over the constant field K. Denote as usual the multiplicative group of F
by F ∗. Define Γ to be the subgroup of F ∗ generated by

α1(x), . . . , αd(x), α1(P (x)), . . . , αd(P (x));

these are the characteristic roots of (Gn(x))∞n=0 and (Gn(P (x)))∞n=0, respectively.
It is obvious that Γ can be seen as a finitely generated subgroup of C∗, because

we can embed F ∗ into C∗ by choosing a maximal set of algebraically independent
elements from x and the coefficients of A0, . . . , Ad−1, G0, . . . , Gd−1, and sending the
elements of this set to algebraically independent elements of C. Moreover, it is clear
that the rank r of Γ is at most 2d.
F will be the field of definition for our problem, because we will reduce the equa-

tions under consideration to linear equations over F , where we look for solutions
in Γ. First, we will deduce some more information about these sets and we will do
this in the following lemmas.

First, we calculate the genus of the function field F/K.

Lemma 6.1. We denote by g the genus of the function field F/K. Then we have

g ≤ d2d2
degD(degP + 1)− 2.

Proof. First observe that we have

F = K(x)(α1(x), . . . , αd(x)) ·K(x)(α1(P (x)), . . . , αd(P (x))).

Let us denote

F1 = K(x, α1(x), . . . , αd(x)), F2 = K(x, α1(P (x)), . . . , αd(P (x))).

Furthermore, we denote by gi the genus of Fi/K (i = 1, 2). We have

n1 = [F : F1] ≤ d! and n2 = [F : F2] ≤ d!.

Next, we calculate bounds for g1, g2. Observe that

F1 = K(x, α1(x)) ·K(x, α2(x)) · · ·K(x, αd(x)).

We apply the Hurwitz Genus Formula (Theorem 3.7) to K(x)/K and F̃ /K(x),
where F̃ = K(x, αi(x)) for some i = 1, . . . , d. Observe that the constant field of
F and, therefore, of all intermediate fields is K and that the genus of the rational
function field K(x) is zero (cf. [19], p. 22). Denote by g̃ the genus of F̃ . Therefore,
we get

2g̃ − 2 = −2[F̃ : K(x)] + deg Diff(F̃ /K(x)).
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We calculate the different:

Diff(F̃ /K(x)) =
∑

P∈PK(x)

∑
P ′|P

d(P ′|P )P ′,

where PK(x) denotes the set of places of K(x) and P ′|P means that P ′ ∈ PF̃ (the
places of F̃ ) lies over P . The second sum is extended over all extensions of P .
Because of char K = 0, we conclude by Dedekind’s Different Theorem (cf. [19], p.
89) that

d(P ′|P ) = e(P ′|P )− 1 ≤ e(P ′|P ),

for all places P of K(x) and for all places P ′ in F̃ lying over P and where
e(P ′|P ) denotes the ramification index. Moreover, for almost all P and P ′ we
have d(P ′|P ) = 0, i.e., e(P ′|P ) = 1. So, let us denote by S the set of places
P ∈ PK(x) that ramify in F̃ .

We calculate

deg Diff(F̃ /K(x)) =
∑
P∈S

∑
P ′|P

d(P ′|P ) degP ′ ≤
∑
P∈S

∑
P ′|P

e(P ′|P ) degP ′.

We use

degP ′ = [F̃P ′ : K] = [F̃P ′ : K(x)P ] · [K(x)P : K] = f(P ′|P ) · degP,

where F̃P ′ ,K(x)P are the residue class fields of P ′, P respectively and f(P ′|P ) is
the relative degree of P ′ over P . Thus

deg Diff(F̃ /K(x)) ≤
∑
P∈S

degP
∑
P ′|P

e(P ′|P )f(P ′|P ) =
∑
P∈S

degP · [F̃ : K(x)],

where we have used Theorem III.1.11 in [19] to get the last equation. Finally, we use
that, since K is algebraically closed, degP = 1 for all P ∈ S (e.g., cf. Proposition
I.2.1 in [19]) and that [F̃ : K(x)] ≤ d. This implies that deg Diff(F̃ /K(x)) ≤ d |S|
and finally,

g̃ ≤ |S| − 2
2

d+ 1 ≤ d(|S| − 1),

where |S| denotes as usual the cardinality of S and where we have assumed that
d ≥ 2, |S| ≥ 2, which is no loss of generality.

We want to bound |S|. Observe that α1(x), . . . , αd(x) are integral over K[x]
since they are the roots of a monic polynomial with coefficients in K[x] (namely
the characteristic polynomial). Therefore, there exists an—over K(x)—monic ir-
reducible polynomial H(T ) with coefficients in K[x] which generates F̃ /K(x). For
ξ ∈ K let Pξ denote the place in K(x) corresponding to x−ξ. We have e(P |Pξ) = 1
for almost all ξ ∈ K. Indeed, by a theorem of Kummer (cf. [19], p. 80) only at the
poles of the coefficients of the polynomial H(T ) and at roots of the discriminant
of H(T ) ramifications may occur (and the coefficients are polynomials and thus do
not have poles at finite places). Since H(T ) divides Q(T ), the discriminant of H(T )
must divide D(x). Hence,

|S| ≤ degD + 1

and, therefore,
g̃ ≤ ddegD.
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Now we use Castelnuovo’s Inequality (Theorem 3.6) several times and conclude
that

g1 ≤ (. . . (((2d2 degD + d2)d2 + d2 degD + d3)d3 + d2 degD + d4)d4

+ . . .)dd−1 + d2 degD + dd

≤ dd
2
(degD + 1).

In precisely the same way, we can conclude that

g2 ≤ dd
2
(degD degP + 1).

Now using Castelnuovo’s Inequality (Theorem 3.6) once again we get

g ≤ d!dd
2
(degD + 1) + d!dd

2
(degD degP + 1) + d!2

≤ d!dd
2
(degD(degP + 1) + 3) ≤ d2d2

degD(degP + 1)− 2,

and, therefore, our proof is finished. �

Next, we prove the following lemma:

Lemma 6.2. We assume degA0 ≥ 1 and degP ≥ 1. Then there exists a finite
subset S ⊂MF of valuations of the function field F such that Γ is contained in the
group of S-units US and such that

|S| ≤ d!2(degA0(degP + 1) + 1) ≤ 6d!2 degA0 degP − 1.

Proof. Let S∞ be the set of infinite valuations of F , and S0 the set of finite
valuations of F . Note that for every ν ∈ S0 we have ν(α1) ≥ 0, . . . , ν(αd) ≥
0, ν(α1(P )) ≥ 0, . . . , ν(αd(P )) ≥ 0 since these functions are integral over K[x].
Take

S = S∞ ∪
2d⋃
i=1

Si,

where
Si = {ν ∈ S0 | ν(αi) > 0}, Sd+i = {ν ∈ S0 | ν(αi(P )) > 0}

for i = 1, . . . , d. Then clearly Γ is a subgroup of US . Since [F : K(x)] ≤ d!2, we
have |S∞| ≤ d!2. Furthermore,

α1(x) · · ·αd(x) · α1(P (x)) · · ·αd(P (x)) = A0(x) · A0(P (x)) =: Q(x).

Therefore,
2d⋃
i=1

Si =: S̃ := {ν ∈ S0 | ν(Q) > 0}.

Each of the valuations in S̃ is an extension to F of some valuation νξ on K(x)
corresponding to a zero ξ of Q(x). The polynomial Q(x) has at most degQ =
degA0(degP + 1) zeros, and for each of these zeros ξ, the valuation νξ can be
extended in at most d!2 ways to a valuation on F . Therefore,

|S̃| ≤ d!2 degA0(degP + 1).

This implies

|S| ≤ d!2(degA0(degP + 1) + 1)
≤ d!2(2 degA0 degP + 1) ≤ 6d!2 degA0 degP − 1,

since degA0 ≥ 1 and degP ≥ 1, which was our assertion. �
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Finally, we need the following properties:

Lemma 6.3. Assume that none of the roots and the quotient of distinct roots of the
characteristic polynomial of (Gn(x))∞n=0 is an element of K∗. Let γ1, γ2 be nonzero
elements of F . Then there is at most one pair of integers n,m such that

(6.1) γ1
αi(x)n

αk(P (x))m
∈ K∗ and γ2

αj(x)n

αk(P (x))m
∈ K∗

or

(6.2) γ1
αi(x)n

αk(P (x))m
∈ K∗ and γ2

αj(P (x))m

αk(P (x))m
∈ K∗,

respectively, where 1 ≤ i, j, k ≤ d are different integers.

Proof. First we prove equation (6.1). Suppose there are two such pairs (n1,m1),
(n2,m2). Let n = n1 − n2,m = m1 − m2. Then, by dividing the first equations
((6.1) with n1,m1) by the second equations ((6.1) with n2,m2) we get

(6.3)
αi(x)n

αk(P (x))m
∈ K∗ and

αj(x)n

αk(P (x))m
∈ K∗;

hence αi(x)n/αj(x)n ∈ K∗. But this can only hold if αi(x)/αj(x) ∈ K∗, which
contradicts our assumption, or if n = 0, whence n1 = n2 and so by (6.3) we get
also m1 = m2.

In the same way, if we assume that (6.2) holds for two such pairs, we conclude
that

(6.4)
αi(x)n

αk(P (x))m
∈ K∗ and

αj(P (x))m

αk(P (x))m
∈ K∗.

But now we can conclude that m = 0 or m1 = m2 by using the second part of (6.4)
and then by the first part of (6.4), we get also n1 = n2. Observe that we have used
our assumption twice to get this. �

In the next section, we will reduce the solvability of our equation (2.3) to the
solvability of a system of critical exponential equations in n,m.

7. Reduction to a system of equations

First observe that by (2.2) we have gi(x), gi(P (x)) ∈ F for i = 1, . . . , d. The
same equation and the definition of R implies that

d∏
j=1

gj(x)αj(x)
d∏
i=1
i6=j

(αi(x) − αj(x)) = R.

By condition (iv) of Theorems 2.1 and 2.5 or condition (iii) of Theorems 2.3 and 2.7,
we have R 6= 0. Hence gj(x) 6= 0 for j = 1, . . . , d. This ensures that gj(P (x)) 6= 0
for j = 1, . . . , d.

Assume that n,m ≥ 0, n 6= m are integers satisfying Gn(x) = cGm(P (x)) for
some c ∈ K∗. It follows that

(7.1)
d∑
i=1

gi(x)αi(x)n = c

d∑
i=1

gi(P (x))αi(P (x))m.

We have already seen that gd(P (x)) 6= 0. We have A0 6= 0 by (ii) and (iii) in
Theorems 2.1 and 2.5 and by (iii) in Theorems 2.3 and 2.7, respectively; hence
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αd(P (x)) 6= 0 holds also. Dividing by gd(P (x))αi(P (x))m and sorting the sum-
mands we obtain the weighted equation

(7.2)
d∑
i=1

gi(x)
gd(P (x))

xi −
d−1∑
i=1

gi(P (x))
gd(P (x))

xd+i = 1

in the unknowns

xj = c−1 αj(x)n

αd(P (x))m
for j = 1, . . . , d,

xd+j =
αj(P (x))m

αd(P (x))m
for j = 1, . . . , d− 1.

Observe that x1, . . . , x2d−1 are elements of the set US, which exists by Lemma 6.2.
This is because of the fact that Γ is contained in US and c ∈ K∗. Lemma 6.3
implies that any given pair of elements (xi, xj) or (xi, xd+j) for 1 ≤ i < j ≤ d gives
rise to at most one pair (n,m); especially any tuple (x1, . . . , x2d−1) induces at most
one solution (n,m) of the equation under consideration. Because of the fact that
α1(x), . . . , αd(x) are not in K∗ (and therefore also α1(P (x)), . . . , αd(P (x)) are not
in K∗) it follows that a given pair (xd+i, xd+j) (1 ≤ i < j ≤ d) induces at most one
m. We will show that this in turn induces (via our equation Gn(x) = cGm(P (x))
at most finitely many pairs (n,m).

We set

βi =
gi(x)

gd(P (x))
and βd+i =

gi(P (x))
gd(P (x))

for i = 1, . . . , d.

Now let us assume that we can bound the number of solutions of the equation

β1x1 + · · ·+ βdxd + βd+1xd+1 + · · ·+ β2d−1x2d−1 = 1,

where no nontrivial subsum vanishes, by a constant W (2d− 1). More generally we
assume that the number of solutions of

(7.3) γ1y1 + · · ·+ γnyn = 1,

with γ1, . . . , γn ∈ F ∗ and yi = xj or = xd+j for some j, where no nontrivial subsum
vanishes and which leads to a solution of our equation, can be bounded by W (n).
This is, of course, true in the special case that c is always equal to 1 by the theorem
of Evertse, Schlickewei and Schmidt (Theorem 3.1). In the more general case we
will deduce this later (see Section 9) using Proposition 3.5.

Let J be a nonempty subset of {1, . . . , 2d−1} with 1 ≤ |J | ≤ 2d−2 and consider
those solutions (x1, . . . , x2d−1) ∈ U2d−1

S of the above equation (7.2) for which

(7.4)
∑
i∈J

βixi = 1,

but no proper nonempty subsum of (7.4) vanishes. We have to distinguish three
cases:

Case 1. First we assume that |J | = 2d− 2. In this case we must have βjxj = 0 for
the single j not belonging to J . But this cannot hold since βj 6= 0 for j = 1, . . . , d
and 0 /∈ Γ ⊂ US.
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Case 2. The second case is that J ⊆ {d+1, . . . , 2d−1}. This case is special because
the components of (7.4) now depend only on m. By Theorem 3.2 we obtain that
(7.4) has at most

e(6(d−1))3(d−1)

solutions. This implies that we have at most that many possibilities for m. For
fixed m the right-hand side of

d∑
i=1

gi(x)c−1αi(x)n =
d∑
i=1

gi(P (x))αi(P (x))m

is a fixed element, namely Gm(P (x)), of K[x]. If Gm(P (x)) = 0, then we obtain
Gn(x) = 0, which can hold by Theorem 3.2 for at most

e(6d)3d

many n also. Otherwise, dividing by Gm(P (x)) we get

d∑
i=1

gi(x)
Gm(P (x))

yi = 1,

where
yi = c−1αi(x)n for i = 1, . . . , d.

This is again a weighted S-unit equation, whose number of solutions we can bound
by W ∗(d), which we will again show later. Taking account of the possible subsets
J , we see that we have at most

2d max
{
W ∗(d), e(6d)3d}

e(6(d−1))3(d−1)

pairs of solutions (n,m) in this case.

Case 3. The remaining case is J ∩ {1, . . . , d} 6= ∅. We consider two subcases: The
first subcase is 1 < |J | ≤ 2d−3. In this case we can bound the number of solutions
(n,m) by W (2d−3) since (7.4) is a weighted S-unit equation with 2d−3 variables.
The number of cases can be bounded by 4d. Thus we have

4dW (2d− 3)

possible solutions. The last subcase is |J | = 1. Since we have J ∩ {1, . . . , d} 6= ∅,
we conclude that βuxu = 1 for some 1 ≤ u ≤ d, i.e., we have

gu(x)αu(x)n = c gd(P (x))αd(P (x))m.

If this is true, then the equation
d∑
i=1
i6=u

gi(x)αi(x)n = c

d∑
j=1
j 6=d

gj(P (x))αj(P (x))m

must simultaneously hold. But this is essentially the same equation as (7.1) with
one summand less at both sides of the equation. Thus, we can continue this process
and ultimately obtain that the equation (7.1) has at most

d ·
(
W (2d− 1) + 2d max

{
W ∗(d), e(6d)3d}

e(6(d−1))3(d−1)
+ 4dW (2d− 3)

)
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solutions (n,m) ∈ Z2, n,m ≥ 0, n 6= m or it is a solution of a system of equations
of the form

gu(x)αu(P (x))n = c gπ(u)(P (x))απ(u)(P (x))m, u = 1, . . . , d,

where π is a permutation of the set {1, . . . , d}.
To handle this exceptional system of equations, we will need most of the assump-

tions in our theorems. We will handle these cases in the next section.

8. Handling the exceptional cases

We start with the system of equations

(8.1) gu(x)αu(P (x))n = c gπ(u)(P (x))απ(u)(P (x))m, u = 1, . . . , d,

where π is a permutation of the set {1, . . . , d}. We will show that this system has
only finitely many solutions (n,m).

First we assume the conditions of Theorems 2.1 and 2.5. Indeed, in this
case we have degD(P ) = degD degP > degD ≥ 1, since degP > 1 by assumption
(ii). On the other hand, we have

D(P (x)) =
d∏
j=1

Q(P )′(αj(P (x))) and D(x) =
d∏
j=1

Q′(αj(x)),

where ′ denotes differentiation with respect to the variable T . Hence there exists a
pair (u, v) = (u, π(u)) and a finite valuation ν of F such that

ν(Q(P )′(αv(P ))) > ν(Q′(αu)) ≥ 0.

Before continuing we state the following useful lemma.

Lemma 8.1. Let A,B, P ∈ K[x]. Then

gcd(A,B) = 1 if and only if gcd(A(P ), B(P )) = 1.

This lemma is a special case of a lemma in the monograph of Schinzel [16], p.
16. It was originally proved in [15].

Now assumption (iii) of Theorem 2.1 together with Lemma 8.1 implies that

ν(αv(P )) = 0,

since ν(D(P )) > 0, while assumption (iv) implies that

ν

(
d−1∑
i=0

Li( ~A, ~G)αv(P )i
)

= 0.

Hence (2.2) implies (with v instead of 1) that

ν(gv(P )) = −ν

 d∏
i=1
i6=v

(αi(P )− αv(P ))

 = −ν(Q(P )′(αv(P ))).

Therefore, (8.1) implies that

(8.2) ν(gu) + nν(αu) = −ν(Q(P )′(αv(P ))),

where we have used ν(c) = 0 since c ∈ K∗. Observe that α1(x), . . . , αd(x) are
integral over K[x], since they are zeros of the monic characteristic equation Q(T ) =
0 with coefficients in K[x]. The integral closure of K[x] in F consists of those

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



4676 CLEMENS FUCHS, ATTILA PETHŐ, AND ROBERT F. TICHY

elements f such that ν(f) ≥ 0 for every finite valuation ν of F . So, in particular,
ν(αu) ≥ 0.

Using (2.2) once again (with u instead of 1), we get

ν(gu) + ν(αu) + ν(Q′(αu)) = ν

(
d−1∑
i=0

Lu( ~A, ~G)αiu

)
≥ 0,

by the remark from above and the fact that Lu( ~A, ~G)(x) ∈ Q[ ~A, ~G] and the com-
ponents of ~A and ~G are (as polynomials) integral elements. Therefore, we conclude
that

ν(gu) + ν(αu) ≥ −ν(Q′(αu)),
which yields, together with (8.2),

nν(αu) = −ν(Q(P )′(αv(P ))) − ν(gu)
≤ −ν(Q(P )′(αv(P ))) + ν(Q′(αu)) + ν(αu) < ν(αu).

Since ν(αu) ≥ 0, we conclude that n = 0. Thus, equation (8.1) induces only
solutions of the kind (0,m) with m > 0.

Now we have to distinguish between the assumptions of Theorems 2.1 and 2.5.
First let us assume (i) of Theorem 2.1. We investigate for n = 0,

gu(x) = c gv(P (x))αv(P (x))m.

Assume that there are two solutions m1 and m2. Then we have

c1αv(P (x))m1 = c2αv(P (x))m2

(c ∈ K∗ depends on m) or

αv(P (x))m1−m2 ∈ K∗,

which is a contradiction unless m1 = m2. Therefore, we get for each system (8.1)
at most one solution (n,m).

Now assume that we have assumption (i) of Theorem 2.5. By the arguments
above one has

αv(P (x))m1−m2 = 1,
which implies m1 = m2. So there is only one possible value for m and, therefore,
at most one solution (n,m).

We consider now the assumptions of Theorems 2.3 and 2.7. From condition
(iv) (together with (ii) and (iii)) we get that there is a valuation ν of F with

ν(A0) > 0 and ν(A0(P )) = 0 or ν(A0) = 0 and ν(A0(P )) > 0.

From this we can conclude (observe that α1(x), . . . , αd(x) are integral over K[x])
that there exists an index u (1 ≤ u ≤ d) with either

ν(αu) > 0 and ν(αi(P )) = 0 for i = 1, . . . , d,

or
ν(αu(P )) > 0 and ν(αi) = 0 for i = 1, . . . , d.

In the first case, we look at the equation

gu(x)αu(x)n = c gπ(u)(P (x))απ(u)(P (x))m

of the system (8.1). We get

ν(gu) + nν(αu) = ν(gπ(u)).
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But this can hold for at most one n, namely

n0 =
ν(gπ(u))− ν(gu)

ν(αu)
.

In the second case, we look at

gπ−1(u)(x)απ−1(u)(x)n = c gu(P (x))αu(P (x))m.

Similarly as above, we get

ν(gπ−1(u)) = ν(gu(P )) +mν(αu(P ))

and this can only hold for at most one m, namely

m0 =
ν(gπ−1(u))− ν(gu(P ))

ν(αu(P ))
.

Let us first assume the conditions of Theorem 2.3. The case that there is at most
one n = n0 implies as above that we have

c απ(u)(P (x))m =
gu(x)αu(x)n0

gπ(u)(P (x))
.

From this we can again conclude that there is at most one m also. The case that
there is at most one m = m0 runs along the same line and gives by

c−1απ−1(u)(x)n =
gu(P (x))αu(P (x))m0

gπ−1(u)(x)

and condition (i) that there is at most one n. So in this case each system (8.1)
gives at most one solution (n,m).

Finally, we assume the hypotheses of Theorem 2.7. Again, as above, we get via
the equations

απ(u)(P (x))m1−m2 = 1 or απ−1(u)(x)n1−n2 = 1

that there is at most one possible solution (n,m) in both cases.
To sum up we can bound the number of solutions (n,m) ∈ Z2, n,m ≥ 0, n 6= m

that come from systems of equations (8.1) by

d!.

Using this bound and the other bound calculated in the previous section we will
be able to complete our proof and we will do this for Theorems 2.1 and 2.3 and
Theorems 2.5 and 2.7 in separate sections.

9. Calculation of the bounds for Theorems 2.1 and 2.3

It is left to show that the equation (cf. (7.3))

γ1y1 + · · ·+ γnyn = 1

with γ1, . . . , γn ∈ F ∗ and

yi = c−1 αi(x)n

αd(P (x))m
or yi =

αi(P (x))m

αd(P (x))m

for some i, where no nontrivial subsum vanishes and which leads to a solution of
Gn(x) = cGm(P (x)) has at most W (n) solutions.
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We first show this for the equation
d∑
i=1

gi(x)
gd(P (x))

xi −
d−1∑
i=1

gi(P (x))
gd(P (x))

xd+i = 1

where x1, . . . , x2d−1 are elements of the set KΓ ⊂ US . Take U to be the subset of
(KΓ)2d−1 consisting of elements (x1, . . . , x2d−1) of the same form as above which
lead to solutions of Gn(x) = cGm(P (x)) where S is the set of absolute values of F
from Lemma 6.2. We have to show that we have at most W (2d−1) solutions where
no nontrivial subsum vanishes and we do this by applying Proposition 3.5. There-
fore, we first have to show that each pair (xi, xj) gives rise to at most k solutions of
the above equation. Lemma 6.3 implies that any given pair of elements (xi, xj) or
(xi, xd+j) for 1 ≤ i < j ≤ d gives rise to at most one pair (n,m). Because of the fact
that α1(x), . . . , αd(x) are not in K∗ (and, therefore, also α1(P (x)), . . . , αd(P (x))
are not in K∗) it follows that a given pair (xd+i, xd+j) (1 ≤ i < j ≤ d) induces at
most one m. But this implies that we have to calculate the number of solutions
n of Gn(x) = cGm(P (x)). If Gm(P (x)) = 0, this equation reduces to Gn(x) = 0,
which can happen by Theorem 3.2 for at most

e(6d)3d

many n. Now, if Gm(P (x)) is different from 0, we have to consider the equation

(9.1)
g1(x)

Gm(P (x))
z1 + · · ·+ gd(x)

Gm(P (x))
zd = 1,

where
z1 = c−1α1(x)n, . . . , zd = c−1αd(x)n.

But we can apply Proposition 3.5 (where we put U = {(c−1α1(x)n, . . . , c−1αd(x)n)
∈ (KΓ)n}) to this equation once more: each pair (zi, zj) gives rise to at most one
n, because otherwise we have αi(x)/αj(x) ∈ K∗, which contradicts assumption (i)
in Theorems 2.1 and 2.3. Moreover, assume that we have

γc−1αi(x)n1 ∈ K∗, γc−1αi(x)n2 ∈ K∗,

where γ ∈ F ∗. Then we get a contradiction unless n1 = n2. Thus we can bound the
number of solutions of (9.1), where no subsum vanishes, by W ∗(d) := A(d, 1). Since
all nontrivial subsums are of the same shape and there are at most 2d subsums, we
get that there are at most

2ded
2

(log(g + 2))d−2 (ed)(d−1)(d+1)(s+1)

pairs (n,m) in this case. Altogether, we get at most

ed
2+(6d)3d

(log(g + 2))d−2 (ed)(d−1)(d+1)(s+1)

solutions (n,m) of (7.1).
Now let γ1, γ2 ∈ F ∗ be given. In exactly the same way as above, Lemma 6.3

implies that γ1xi, γ2xj ∈ K∗ or γ1xi, γ2xd+j ∈ K∗ for 1 ≤ i < j ≤ d gives rise
to at most one pair (n,m). Because of the fact that α1(x), . . . , αd(x) are not in
K∗ (and, therefore, also α1(P (x)), . . . , αd(P (x)) are not in K∗) it follows that
γ1xd+i, γ2xd+j ∈ K∗ (1 ≤ i < j ≤ d) induces at most one m and we can use the
arguments from above to get an upper bound for the number of (n,m) with this
property.
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From this it follows that we may take

k = ed
2+(6d)3d

(log(g + 2))d−2 (ed)(d−1)(d+1)(s+1).

Now Proposition 3.5 implies that equation (7.1) has at most

W (2d− 1)

= e(d2+(6d)3d)(2d−1)e(2d−1)2
(log(g + 2))(d−2)(2d−1)+2d−3 (2ed)(2d−2)2d(s+1)

·(2ed)(d−1)(d+1)(2d−1)(s+1)

≤ e(d2+2d−1+(6d)3d)(2d−1) (log(g + 2))2d2

(2ed)5d3(s+1)

solutions (n,m), where no subsum vanishes.
Observe that exactly the same arguments work for the more general equation

(7.3) (because we just use the structure of the solutions and the fact that we want
to get solutions of Gn(x) = cGm(P (x))) and that the bounds W (2d − 3),W ∗(d)
that we get can trivially be estimated from above by W (2d− 1).

By using the bound for the genus g of F/K (Lemma 6.1), we get

(log(g + 2))2d2

≤
(

log
(
d2d2

degD(degP + 1)
))2d2

.

Combining this bound with the upper bounds calculated in Sections 7 and 8, which
add up to

d ·
(
W (2d− 1) + 2d max

{
W ∗(d), e(6d)3d}

e(6(d−1))3(d−1)
+ 4dW (2d− 3)

)
+ d!,

and using the bound for the cardinality of S (Lemma 6.2), we get the following
bound:

C(d,A0, D, P ) = e(6d)4d
(

log
(
d2d2

degD(degP + 1)
))2d2

(2ed)30d3d!2 degA0 degP

for the number of pairs (n,m) of integers with n 6= m such thatGn(x)=cGm(P (x)).

10. Calculation of the bounds for Theorems 2.5 and 2.7

We first have to show that (7.1), which we have shortened to

β1x1 + · · ·+ βdxd + βd+1xd+1 + · · ·+ β2d−1x2d−1 = 1,

where x1, . . . , x2d−1 ∈ Γ ⊂ US has at most W (2d − 1) nondegenerate solutions
(n,m), i.e., solutions where no nontrivial subsum of the left-hand side of (7.1)
vanishes. This follows from the Main Theorem on S-unit equations over fields of
characteristic zero due to Evertse, Schlickewei and Schmidt (Theorem 3.1). But
instead of applying it directly to the group Γn, which would yield W (2d − 1) =
e(6(2d−1))3(2d−1)(2d+1), we apply it to the subgroup Γ̃ of (F ∗)2d−1 generated by

(α1(x), . . . , αd(x), 1, . . . , 1)

and (
αd(P (x))−1, . . . , αd(P (x))−1,

α1(P (x))
αd(P (x))

, . . . ,
αd−1(P (x))
αd(P (x))

)
.

Thus the rank of Γ̃ is at most 2. Therefore, we get

W (2d− 1) = e(6(2d−1))3(2d−1)·3
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for the number of nondegenerate solutions of (7.1). In the same way we also obtain
for the more general equations (7.3)

W (n) = e(6n)3n·3

and for W ∗(d) we can actually use Theorem 3.2 to get

W ∗(d) = e(6d)3d
.

Combining these bounds with the upper bounds calculated in Sections 7 and 8
yields

d ·
(
W (2d− 1) + 2d max

{
W ∗(d), e(6d)3d}

e(6(d−1))3(d−1)
+ 4dW (2d− 3)

)
+ d!

and, therefore, we get the bound

C(d) = e(12d)6d

for the number of pairs (n,m) of integers with n 6= m such that Gn(x) = Gm(P (x)).
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