Stratified transversality by isotopy
HTML articles powered by AMS MathViewer
- by C. Murolo, D. J. A. Trotman and A. A. Du Plessis
- Trans. Amer. Math. Soc. 355 (2003), 4881-4900
- DOI: https://doi.org/10.1090/S0002-9947-03-03236-7
- Published electronically: July 28, 2003
- PDF | Request permission
Abstract:
For $\mathcal {X}$ an abstract stratified set or a $(w)$-regular stratification, hence for any $(b)$-, $(c)$- or $(L)$-regular stratification, we prove that after stratified isotopy of $\mathcal {X}$, a stratified subspace $\mathcal {W}$ of $\mathcal {X}$, or a stratified map $h : \mathcal {Z} \to \mathcal {X}$, can be made transverse to a fixed stratified map $g: \mathcal {Y} \to \mathcal {X}$.References
- Ralph Abraham and Joel Robbin, Transversal mappings and flows, W. A. Benjamin, Inc., New York-Amsterdam, 1967. An appendix by Al Kelley. MR 0240836
- K. Bekka, Sur les propriétés topologiques et métriques des espaces stratifiés, thesis, University of Paris-Sud, Orsay, 1988.
- K. Bekka, C-régularité et trivialité topologique, Singularity theory and its applications, Part I (Coventry, 1988/1989) Lecture Notes in Math., vol. 1462, Springer, Berlin, 1991, pp. 42–62 (French). MR 1129023, DOI 10.1007/BFb0086373
- K. Bekka, Isotopy theorem, preprint, University of Liverpool, 1991.
- Karim Bekka and Claudio Murolo, Homologie d’espaces stratifiés, C. R. Acad. Sci. Paris Sér. I Math. 331 (2000), no. 9, 703–708 (French, with English and French summaries). MR 1797755, DOI 10.1016/S0764-4442(00)01655-4
- Hans Brodersen and David Trotman, Whitney ${\rm (}b)$-regularity is weaker than Kuo’s ratio test for real algebraic stratifications, Math. Scand. 45 (1979), no. 1, 27–34. MR 567430, DOI 10.7146/math.scand.a-11822
- William Fulton, Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 2, Springer-Verlag, Berlin, 1984. MR 732620, DOI 10.1007/978-3-662-02421-8
- Christopher G. Gibson, Klaus Wirthmüller, Andrew A. du Plessis, and Eduard J. N. Looijenga, Topological stability of smooth mappings, Lecture Notes in Mathematics, Vol. 552, Springer-Verlag, Berlin-New York, 1976. MR 0436203
- Claude Godbillon, Géométrie différentielle et mécanique analytique, Hermann, Paris, 1969 (French). MR 0242081
- M. Golubitsky and V. Guillemin, Stable mappings and their singularities, Graduate Texts in Mathematics, Vol. 14, Springer-Verlag, New York-Heidelberg, 1973. MR 0341518
- M. Goresky, Cohomology and homology of stratified objects, thesis, Brown University, 1976.
- R. Mark Goresky, Whitney stratified chains and cochains, Trans. Amer. Math. Soc. 267 (1981), no. 1, 175–196. MR 621981, DOI 10.1090/S0002-9947-1981-0621981-X
- Mark Goresky and Robert MacPherson, Intersection homology theory, Topology 19 (1980), no. 2, 135–162. MR 572580, DOI 10.1016/0040-9383(80)90003-8
- Mark Goresky and Robert MacPherson, Stratified Morse theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 14, Springer-Verlag, Berlin, 1988. MR 932724, DOI 10.1007/978-3-642-71714-7
- T.-C. Kuo, The ratio test for analytic Whitney stratifications, Proceedings of Liverpool Singularities—Symposium, I (1969/70), Lecture Notes in Mathematics, Vol. 192, Springer, Berlin, 1971, pp. 141–149. MR 0279333
- Ta Lê Loi, Verdier and strict Thom stratifications in o-minimal structures, Illinois J. Math. 42 (1998), no. 2, 347–356. MR 1612771
- John N. Mather, Stability of $C^{\infty }$ mappings. II. Infinitesimal stability implies stability, Ann. of Math. (2) 89 (1969), 254–291. MR 259953, DOI 10.2307/1970668
- John N. Mather, Stratifications and mappings, Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971) Academic Press, New York, 1973, pp. 195–232. MR 0368064
- J. Mather, Notes on topological stability, Mimeographed notes, Harvard University, 1970.
- C. McCrory, Poincaré duality in spaces with singularities, Thesis, Brandeis University, 1972.
- Clint McCrory, Stratified general position, Algebraic and geometric topology (Proc. Sympos., Univ. California, Santa Barbara, Calif., 1977) Lecture Notes in Math., vol. 664, Springer, Berlin, 1978, pp. 142–146. MR 518413
- Claudio Murolo, Whitney homology, cohomology and Steenrod squares, Ricerche Mat. 43 (1994), no. 2, 175–204. MR 1324747
- Claudio Murolo, The Steenrod $p$-powers in Whitney cohomology, Topology Appl. 68 (1996), no. 2, 133–151. MR 1374078, DOI 10.1016/0166-8641(95)00043-7
- C. Murolo, Semidifférentiabilité, transversalité et homologie de stratifications régulières, thesis, University of Provence, 1997.
- Tomasz Brzeziński and Shahn Majid, Quantum geometry of algebra factorisations and coalgebra bundles, Comm. Math. Phys. 213 (2000), no. 3, 491–521. MR 1785427, DOI 10.1007/PL00005530
- Claudio Murolo and David Trotman, Relèvements continus de champs de vecteurs, Bull. Sci. Math. 125 (2001), no. 4, 253–278 (French, with English and Chinese summaries). MR 1831981, DOI 10.1016/S0007-4497(00)01072-1
- Hiroko Natsume, The realization of abstract stratified sets, Kodai Math. J. 3 (1980), no. 1, 1–7. MR 569526
- L. Noirel, Plongements sous-analytiques d’espaces stratifiés de Thom-Mather, thesis, University of Provence, 1996.
- Adam Parusiński, Lipschitz stratification, Global analysis in modern mathematics (Orono, ME, 1991; Waltham, MA, 1992) Publish or Perish, Houston, TX, 1993, pp. 73–89. MR 1278751
- A. A. du Plessis, Continuous controlled vector fields, Singularity theory (Liverpool, 1996) London Math. Soc. Lecture Note Ser., vol. 263, Cambridge Univ. Press, Cambridge, 1999, pp. xviii–xix, 189–197. MR 1709353
- Michael Teufel, Abstract prestratified sets are $(b)$-regular, J. Differential Geometry 16 (1981), no. 3, 529–536 (1982). MR 654642
- R. Thom, Ensembles et morphismes stratifiés, Bull. Amer. Math. Soc. 75 (1969), 240–284 (French). MR 239613, DOI 10.1090/S0002-9904-1969-12138-5
- David J. A. Trotman, Geometric versions of Whitney regularity for smooth stratifications, Ann. Sci. École Norm. Sup. (4) 12 (1979), no. 4, 453–463. MR 565466
- Jean-Louis Verdier, Stratifications de Whitney et théorème de Bertini-Sard, Invent. Math. 36 (1976), 295–312 (French). MR 481096, DOI 10.1007/BF01390015
- Andrei Verona, Stratified mappings—structure and triangulability, Lecture Notes in Mathematics, vol. 1102, Springer-Verlag, Berlin, 1984. MR 771120, DOI 10.1007/BFb0101672
- Hassler Whitney, Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 205–244. MR 0188486
Bibliographic Information
- C. Murolo
- Affiliation: Laboratoire d’Analyse, Topologie et Probabilités, Centre de Mathématiques et Informatique, Université de Provence, 39, rue Joliot-Curie, 13453 Marseille Cedex 13, France
- Email: murolo@gyptis.univ-mrs.fr
- D. J. A. Trotman
- Affiliation: Laboratoire d’Analyse, Topologie et Probabilités, Centre de Mathématiques et Informatique, Université de Provence, 39, rue Joliot-Curie, 13453 Marseille Cedex 13, France
- Email: trotman@gyptis.univ-mrs.fr
- A. A. Du Plessis
- Affiliation: Matematisk Institut, Ny Munkegade, Universitet Aarhus, Aarhus, Denmark
- Email: matadp@mi.aau.dk
- Received by editor(s): October 2, 2001
- Received by editor(s) in revised form: June 4, 2002
- Published electronically: July 28, 2003
- Additional Notes: The first author received support from the Department of Mathematics of the Faculty of Engineering and the Office of International Relations of the University of Naples.
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 355 (2003), 4881-4900
- MSC (2000): Primary 58A35, 57N75; Secondary 57N80, 57R52
- DOI: https://doi.org/10.1090/S0002-9947-03-03236-7
- MathSciNet review: 1997589