Closed product formulas for extensions of generalized Verma modules
HTML articles powered by AMS MathViewer
- by Riccardo Biagioli
- Trans. Amer. Math. Soc. 356 (2004), 159-184
- DOI: https://doi.org/10.1090/S0002-9947-03-03037-X
- Published electronically: August 26, 2003
- PDF | Request permission
Abstract:
We give explicit combinatorial product formulas for the polynomials encoding the dimensions of the spaces of extensions of $(g,p)$-generalized Verma modules, in the cases when $(g,p)$ corresponds to an indecomposable classic Hermitian symmetric pair. The formulas imply that these dimensions are combinatorial invariants. We also discuss how these polynomials, defined by Shelton, are related to the parabolic $R$-polynomials introduced by Deodhar.References
- I. N. Bernšteĭn, I. M. Gel′fand, and S. I. Gel′fand, A certain category of ${\mathfrak {g}}$-modules, Funkcional. Anal. i Priložen. 10 (1976), no. 2, 1–8 (Russian). MR 0407097
- Brian D. Boe, A counterexample to the Gabber-Joseph conjecture, Kazhdan-Lusztig theory and related topics (Chicago, IL, 1989) Contemp. Math., vol. 139, Amer. Math. Soc., Providence, RI, 1992, pp. 1–3. MR 1197826, DOI 10.1090/conm/139/1197826
- Brian D. Boe, Thomas J. Enright, and Brad Shelton, Determination of the intertwining operators for holomorphically induced representations of Hermitian symmetric pairs, Pacific J. Math. 131 (1988), no. 1, 39–50. MR 917864, DOI 10.2140/pjm.1988.131.39
- F. Brenti, Kazhdan-Lusztig and $R$-polynomials, Young’s lattice, and Dyck partitions, Pacific J. Math., to appear.
- F. Brenti, personal communication, December 2000.
- Francesco Brenti, $q$-Eulerian polynomials arising from Coxeter groups, European J. Combin. 15 (1994), no. 5, 417–441. MR 1292954, DOI 10.1006/eujc.1994.1046
- J.-L. Brylinski and M. Kashiwara, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math. 64 (1981), no. 3, 387–410. MR 632980, DOI 10.1007/BF01389272
- Kevin J. Carlin, Extensions of Verma modules, Trans. Amer. Math. Soc. 294 (1986), no. 1, 29–43. MR 819933, DOI 10.1090/S0002-9947-1986-0819933-4
- Luis G. Casian and David H. Collingwood, The Kazhdan-Lusztig conjecture for generalized Verma modules, Math. Z. 195 (1987), no. 4, 581–600. MR 900346, DOI 10.1007/BF01166705
- David H. Collingwood, The ${\mathfrak {n}}$-homology of Harish-Chandra modules: generalizing a theorem of Kostant, Math. Ann. 272 (1985), no. 2, 161–187. MR 796245, DOI 10.1007/BF01450563
- David H. Collingwood and Brad Shelton, A duality theorem for extensions of induced highest weight modules, Pacific J. Math. 146 (1990), no. 2, 227–237. MR 1078380, DOI 10.2140/pjm.1990.146.227
- Vinay V. Deodhar, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra 111 (1987), no. 2, 483–506. MR 916182, DOI 10.1016/0021-8693(87)90232-8
- Thomas J. Enright and Brad Shelton, Categories of highest weight modules: applications to classical Hermitian symmetric pairs, Mem. Amer. Math. Soc. 67 (1987), no. 367, iv+94. MR 888703, DOI 10.1090/memo/0367
- O. Gabber and A. Joseph, Towards the Kazhdan-Lusztig conjecture, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 3, 261–302. MR 644519, DOI 10.24033/asens.1406
- James E. Humphreys, Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, vol. 29, Cambridge University Press, Cambridge, 1990. MR 1066460, DOI 10.1017/CBO9780511623646
- David Kazhdan and George Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), no. 2, 165–184. MR 560412, DOI 10.1007/BF01390031
- Brad Shelton, Extensions between generalized Verma modules: the Hermitian symmetric cases, Math. Z. 197 (1988), no. 3, 305–318. MR 926843, DOI 10.1007/BF01418333
- Richard P. Stanley, Enumerative combinatorics. Vol. I, The Wadsworth & Brooks/Cole Mathematics Series, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986. With a foreword by Gian-Carlo Rota. MR 847717, DOI 10.1007/978-1-4615-9763-6
- Richard P. Stanley, Enumerative combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, vol. 62, Cambridge University Press, Cambridge, 1999. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin. MR 1676282, DOI 10.1017/CBO9780511609589
Bibliographic Information
- Riccardo Biagioli
- Affiliation: Dipartimento di Matematica, Università di Roma “La Sapienza”, 00185 Roma, Italy
- Address at time of publication: LACIM, Université du Quebéc à Montréal, case postale 8888, succursale Centre-Ville, Montréal, Quebéc, Canada H3C 3P8
- Email: biagioli@math.uqam.ca
- Received by editor(s): September 24, 2001
- Received by editor(s) in revised form: February 11, 2002
- Published electronically: August 26, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 159-184
- MSC (2000): Primary 17B10, 05E99; Secondary 22E47, 20F55
- DOI: https://doi.org/10.1090/S0002-9947-03-03037-X
- MathSciNet review: 2020028