Vassiliev invariants for braids on surfaces
Authors:
Juan González-Meneses and Luis Paris
Journal:
Trans. Amer. Math. Soc. 356 (2004), 219-243
MSC (2000):
Primary 20F36; Secondary 57M27, 57N05
DOI:
https://doi.org/10.1090/S0002-9947-03-03116-7
Published electronically:
August 25, 2003
MathSciNet review:
2020030
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We show that Vassiliev invariants separate braids on a closed oriented surface, and we exhibit a universal Vassiliev invariant for these braids in terms of chord diagrams labeled by elements of the fundamental group of the surface.
- 1. John C. Baez, Link invariants of finite type and perturbation theory, Lett. Math. Phys. 26 (1992), no. 1, 43–51. MR 1193625, https://doi.org/10.1007/BF00420517
- 2. Dror Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995), no. 2, 423–472. MR 1318886, https://doi.org/10.1016/0040-9383(95)93237-2
- 3. Dror Bar-Natan, Vassiliev homotopy string link invariants, J. Knot Theory Ramifications 4 (1995), no. 1, 13–32. MR 1321289, https://doi.org/10.1142/S021821659500003X
- 4. Dror Bar-Natan, Vassiliev and quantum invariants of braids, The interface of knots and physics (San Francisco, CA, 1995) Proc. Sympos. Appl. Math., vol. 51, Amer. Math. Soc., Providence, RI, 1996, pp. 129–144. MR 1372767, https://doi.org/10.1090/psapm/051/1372767
- 5. Joan S. Birman, Braids, links, and mapping class groups, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 82. MR 0375281
- 6. Joan S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. (N.S.) 28 (1993), no. 2, 253–287. MR 1191478, https://doi.org/10.1090/S0273-0979-1993-00389-6
- 7. Toshitake Kohno, Série de Poincaré-Koszul associée aux groupes de tresses pures, Invent. Math. 82 (1985), no. 1, 57–75 (French). MR 808109, https://doi.org/10.1007/BF01394779
- 8. R. H. Fox, Free differential calculus I: Derivation in the free group ring, Ann. of Math. 57 (1953), no. 3, 547-560. MR 14:843d
- 9. Juan González-Meneses, New presentations of surface braid groups, J. Knot Theory Ramifications 10 (2001), no. 3, 431–451. MR 1825967, https://doi.org/10.1142/S0218216501000949
- 10. Toshitake Kohno, Vassiliev invariants and de Rham complex on the space of knots, Symplectic geometry and quantization (Sanda and Yokohama, 1993) Contemp. Math., vol. 179, Amer. Math. Soc., Providence, RI, 1994, pp. 123–138. MR 1319605, https://doi.org/10.1090/conm/179/01937
- 11. Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Springer-Verlag, Berlin-New York, 1977. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89. MR 0577064
- 12. Wilhelm Magnus, Abraham Karrass, and Donald Solitar, Combinatorial group theory, Second revised edition, Dover Publications, Inc., New York, 1976. Presentations of groups in terms of generators and relations. MR 0422434
- 13. S. Papadima, The universal finite-type invariant for braids, with integer coefficients, Topology Appl. 118 (2002), no. 1-2, 169-185.
- 14. Daniel G. Quillen, On the associated graded ring of a group ring, J. Algebra 10 (1968), 411–418. MR 231919, https://doi.org/10.1016/0021-8693(68)90069-0
- 15. Jean-Pierre Serre, Lie algebras and Lie groups, 2nd ed., Lecture Notes in Mathematics, vol. 1500, Springer-Verlag, Berlin, 1992. 1964 lectures given at Harvard University. MR 1176100
- 16. Ted Stanford, Braid commutators and Vassiliev invariants, Pacific J. Math. 174 (1996), no. 1, 269–276. MR 1398378
- 17. V. A. Vassiliev, Cohomology of knot spaces, Theory of singularities and its applications, Adv. Soviet Math., vol. 1, Amer. Math. Soc., Providence, RI, 1990, pp. 23–69. MR 1089670
- 18. V. A. Vassiliev, Complements of discriminants of smooth maps: topology and applications, Translations of Mathematical Monographs, vol. 98, American Mathematical Society, Providence, RI, 1992. Translated from the Russian by B. Goldfarb. MR 1168473
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 20F36, 57M27, 57N05
Retrieve articles in all journals with MSC (2000): 20F36, 57M27, 57N05
Additional Information
Juan González-Meneses
Affiliation:
Departamento de Álgebra, Facultad de Matemáticas, Universidad de Sevilla, c/ Tarfia s/n, 41012 Sevilla, Spain
Email:
meneses@us.es
Luis Paris
Affiliation:
Université de Bourgogne, Laboratoire de Topologie, UMR 5584 du CNRS, B.P. 47870, 21078 - Dijon Cedex, France
Email:
lparis@u-bourgogne.fr
DOI:
https://doi.org/10.1090/S0002-9947-03-03116-7
Keywords:
Braid,
surface,
Vassiliev invariant,
finite type invariant
Received by editor(s):
November 7, 2000
Received by editor(s) in revised form:
May 20, 2002
Published electronically:
August 25, 2003
Additional Notes:
The first author was supported in part by DGESIC-PB97-0723, by BFM2001-3207 and by the European network TMR Sing. Eq. Diff. et Feuill
Article copyright:
© Copyright 2003
American Mathematical Society