Framings of knots satisfying differential relations
Authors:
James J. Hebda and Chichen M. Tsau
Journal:
Trans. Amer. Math. Soc. 356 (2004), 267-281
MSC (2000):
Primary 57M25; Secondary 53A04, 53C23, 57R40
DOI:
https://doi.org/10.1090/S0002-9947-03-03222-7
Published electronically:
August 21, 2003
MathSciNet review:
2020032
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: This paper introduces the notion of a differential framing relation for knots in a three-dimensional manifold. There is a canonical map from the space of knots that satisfy a framing relation into the space of framed knots. Under reasonable assumptions this canonical map is a weak homotopy equivalence.
- 1. David Bao, Shiing-shen Chern, and Zhongmin Shen (eds.), Finsler geometry, Contemporary Mathematics, vol. 196, American Mathematical Society, Providence, RI, 1996. MR 1403571
- 2. Craig Benham, Xiao-Song Lin, and David Miller, Subspaces of knot spaces, Proc. Amer. Math. Soc. 129 (2001), no. 10, 3121–3127. MR 1840119, https://doi.org/10.1090/S0002-9939-01-05913-5
- 3. W. Blaschke, Differential Geometrie, vol. I, Chelsea Publishing Company, New York, 1967.
- 4. G. Călugăreanu, Sur les classes d’isotopie des nœuds tridimensionnels et leurs invariants, Czechoslovak Math. J. 11 (86) (1961), 588–625 (French, with Russian summary). MR 0149378
- 5. M. L. Gromov and Ja. M. Èliašberg, Elimination of singularities of smooth mappings, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 600–626 (Russian). MR 0301748
- 6. H. Gluck and L.-H. Pan, Knot theory in the presence of curvature, I, Preprint (February, 1994).
- 7. Herman Gluck and Liu-Hua Pan, Embedding and knotting of positive curvature surfaces in 3-space, Topology 37 (1998), no. 4, 851–873. MR 1607752, https://doi.org/10.1016/S0040-9383(97)00056-6
- 8. Mikhael Gromov, Partial differential relations, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 9, Springer-Verlag, Berlin, 1986. MR 864505
- 9. J. Hebda and C. Tsau, Normal Holonomy and Writhing Number of Smooth Knots, (SLU Preprint) (2000).
- 10. Morris W. Hirsch, Differential topology, Springer-Verlag, New York-Heidelberg, 1976. Graduate Texts in Mathematics, No. 33. MR 0448362
- 11. Hanno Rund, The differential geometry of Finsler spaces, Die Grundlehren der Mathematischen Wissenschaften, Bd. 101, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959. MR 0105726
- 12. David Spring, Convex integration theory, Monographs in Mathematics, vol. 92, Birkhäuser Verlag, Basel, 1998. Solutions to the ℎ-principle in geometry and topology. MR 1488424
- 13. Dirk J. Struik, Lectures on classical differential geometry, 2nd ed., Dover Publications, Inc., New York, 1988. MR 939369
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 57M25, 53A04, 53C23, 57R40
Retrieve articles in all journals with MSC (2000): 57M25, 53A04, 53C23, 57R40
Additional Information
James J. Hebda
Affiliation:
Department of Mathematics, Saint Louis University, St. Louis, Missouri 63103
Email:
hebdajj@slu.edu
Chichen M. Tsau
Affiliation:
Department of Mathematics, Saint Louis University, St. Louis, Missouri 63103
Email:
tsaumc@slu.edu
DOI:
https://doi.org/10.1090/S0002-9947-03-03222-7
Received by editor(s):
May 14, 2001
Received by editor(s) in revised form:
September 11, 2002
Published electronically:
August 21, 2003
Article copyright:
© Copyright 2003
American Mathematical Society