Eigenvalue and gap estimates for the Laplacian acting on -forms
Authors:
Pierre Guerini and Alessandro Savo
Journal:
Trans. Amer. Math. Soc. 356 (2004), 319-344
MSC (2000):
Primary 58J50; Secondary 58J32
DOI:
https://doi.org/10.1090/S0002-9947-03-03336-1
Published electronically:
August 25, 2003
MathSciNet review:
2020035
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We study the gap of the first eigenvalue of the Hodge Laplacian acting on -differential forms of a manifold with boundary, for consecutive values of the degree
.
We first show that the gap may assume any sign. Then we give sufficient conditions on the intrinsic and extrinsic geometry to control it. Finally, we estimate the first Hodge eigenvalue of manifolds whose boundaries have some degree of convexity.
- 1. Isaac Chavel, Eigenvalues in Riemannian geometry, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR 768584
- 2. Bruno Colbois and Gilles Courtois, A note on the first nonzero eigenvalue of the Laplacian acting on 𝑝-forms, Manuscripta Math. 68 (1990), no. 2, 143–160. MR 1063223, https://doi.org/10.1007/BF02568757
- 3. Jozef Dodziuk, Eigenvalues of the Laplacian on forms, Proc. Amer. Math. Soc. 85 (1982), no. 3, 437–443. MR 656119, https://doi.org/10.1090/S0002-9939-1982-0656119-2
- 4. Leonid Friedlander, Some inequalities between Dirichlet and Neumann eigenvalues, Arch. Rational Mech. Anal. 116 (1991), no. 2, 153–160. MR 1143438, https://doi.org/10.1007/BF00375590
- 5. S. Gallot and D. Meyer, Opérateur de courbure et laplacien des formes différentielles d’une variété riemannienne, J. Math. Pures Appl. (9) 54 (1975), no. 3, 259–284 (French). MR 454884
- 6. S. Gallot and D. Meyer, D’un résultat hilbertien à un principe de comparaison entre spectres. Applications, Ann. Sci. École Norm. Sup. (4) 21 (1988), no. 4, 561–591 (French). MR 982334
- 7. G. Gentile and V. Pagliara, Riemannian metrics with large first eigenvalue on forms of degree 𝑝, Proc. Amer. Math. Soc. 123 (1995), no. 12, 3855–3858. MR 1277111, https://doi.org/10.1090/S0002-9939-1995-1277111-2
- 8. P. Guerini, Spectre du Laplacien de Hodge-de Rham: Estimées sur les Variétés Convexes, Preprint.
- 9. P. Guerini, Prescription du Spectre du Laplacien de Hodge-de Rham, Preprint Universität Zürich 2002.
- 10. Peter Li and Shing Tung Yau, Estimates of eigenvalues of a compact Riemannian manifold, Geometry of the Laplace operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979) Proc. Sympos. Pure Math., XXXVI, Amer. Math. Soc., Providence, R.I., 1980, pp. 205–239. MR 573435
- 11. Jeffrey McGowan, The 𝑝-spectrum of the Laplacian on compact hyperbolic three manifolds, Math. Ann. 297 (1993), no. 4, 725–745. MR 1245416, https://doi.org/10.1007/BF01459527
- 12. H. P. McKean, An upper bound to the spectrum of Δ on a manifold of negative curvature, J. Differential Geometry 4 (1970), 359–366. MR 266100
- 13. L. Payne and H. Weinberger, Lower bounds for vibration frequencies of elastically supportes membranes and plates, J. Soc. Ind. Appl. Math. 5 (1957), 171-182. MR 19:1110c
- 14. Robert C. Reilly, On the first eigenvalue of the Laplacian for compact submanifolds of Euclidean space, Comment. Math. Helv. 52 (1977), no. 4, 525–533. MR 482597, https://doi.org/10.1007/BF02567385
- 15. A. Savo, A mean-value lemma and applications, Bull. Soc. Math. France 129 (2001), no. 4, 505-542.
- 16. Junya Takahashi, On the gap between the first eigenvalues of the Laplacian on functions and 1-forms, J. Math. Soc. Japan 53 (2001), no. 2, 307–320. MR 1815136, https://doi.org/10.2969/jmsj/05320307
- 17. J. Takahashi, On the gap between the first eigenvalues of the Laplacian on functions and 1-forms, Ann. Glob. Anal. Geom. to appear.
- 18. H.F. Weinberger, An isoperimetric inequality for the n-dimensional free membrane problem, J. Rational Mech. Anal. 5 (1956), 633-636. MR 18:63c
Retrieve articles in Transactions of the American Mathematical Society with MSC (2000): 58J50, 58J32
Retrieve articles in all journals with MSC (2000): 58J50, 58J32
Additional Information
Pierre Guerini
Affiliation:
Institut für Mathematik, Universität Zürich Irchel, Winterthurerstrasse 90, CH-8057 Zürich, Switzerland
Email:
pguerini@math.unizh.ch
Alessandro Savo
Affiliation:
Dipartimento di Metodi e Modelli Matematici, Università di Roma I La Sapienza, Via Antonio Scarpa 16, 00161 Roma, Italy
Email:
savo@dmmm.uniroma1.it
DOI:
https://doi.org/10.1090/S0002-9947-03-03336-1
Keywords:
Hodge Laplacian,
eigenvalues,
gaps,
convex manifolds
Received by editor(s):
January 13, 2003
Published electronically:
August 25, 2003
Article copyright:
© Copyright 2003
American Mathematical Society