An index for gauge-invariant operators and the Dixmier-Douady invariant
HTML articles powered by AMS MathViewer
- by Victor Nistor and Evgenij Troitsky
- Trans. Amer. Math. Soc. 356 (2004), 185-218
- DOI: https://doi.org/10.1090/S0002-9947-03-03370-1
- Published electronically: August 25, 2003
- PDF | Request permission
Abstract:
Let $\mathcal {G}\to B$ be a bundle of compact Lie groups acting on a fiber bundle $Y \to B$. In this paper we introduce and study gauge-equivariant $K$-theory groups $K_\mathcal {G}^i(Y)$. These groups satisfy the usual properties of the equivariant $K$-theory groups, but also some new phenomena arise due to the topological non-triviality of the bundle $\mathcal {G}\to B$. As an application, we define a gauge-equivariant index for a family of elliptic operators $(P_b)_{b \in B}$ invariant with respect to the action of $\mathcal {G}\to B$, which, in this approach, is an element of $K_\mathcal {G}^0(B)$. We then give another definition of the gauge-equivariant index as an element of $K_0(C^*(\mathcal {G}))$, the $K$-theory group of the Banach algebra $C^*(\mathcal {G})$. We prove that $K_0(C^*(\mathcal {G})) \simeq K^0_\mathcal {G}(\mathcal {G})$ and that the two definitions of the gauge-equivariant index are equivalent. The algebra $C^*(\mathcal {G})$ is the algebra of continuous sections of a certain field of $C^*$-algebras with non-trivial Dixmier-Douady invariant. The gauge-equivariant $K$-theory groups are thus examples of twisted $K$-theory groups, which have recently turned out to be useful in the study of Ramond–Ramond fields.References
- Orlando Alvarez, I. M. Singer, and Bruno Zumino, Gravitational anomalies and the family’s index theorem, Comm. Math. Phys. 96 (1984), no. 3, 409–417. MR 769356, DOI 10.1007/BF01214584
- Luis Alvarez-Gaumé, An introduction to anomalies, Fundamental problems of gauge field theory (Erice, 1985) NATO Adv. Sci. Inst. Ser. B: Phys., vol. 141, Plenum, New York, 1986, pp. 93–206. MR 878768
- M. F. Atiyah, $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1967. Lecture notes by D. W. Anderson. MR 0224083
- M. F. Atiyah and R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523–615. MR 702806, DOI 10.1098/rsta.1983.0017
- M. F. Atiyah and I. M. Singer, The index of elliptic operators. IV, Ann. of Math. (2) 93 (1971), 119–138. MR 279833, DOI 10.2307/1970756
- Thierry Aubin, Espaces de Sobolev sur les variétés riemanniennes, Bull. Sci. Math. (2) 100 (1976), no. 2, 149–173 (French). MR 488125
- A. A. Belavin and V. G. Knizhnik, Algebraic geometry and the geometry of quantum strings, Phys. Lett. B 168 (1986), no. 3, 201–206. MR 830618, DOI 10.1016/0370-2693(86)90963-9
- Jean-Michel Bismut and Daniel S. Freed, The analysis of elliptic families. I. Metrics and connections on determinant bundles, Comm. Math. Phys. 106 (1986), no. 1, 159–176. MR 853982, DOI 10.1007/BF01210930
- Bruce Blackadar, $K$-theory for operator algebras, Mathematical Sciences Research Institute Publications, vol. 5, Springer-Verlag, New York, 1986. MR 859867, DOI 10.1007/978-1-4613-9572-0
- P. Bouwknegt, A. Carey, V. Mathai, M. Murray, and D. Stevenson, Twisted $K$-theory and $K$-theory of bundle gerbes, E-print, hep-th/0106194.
- Theodor Bröcker and Tammo tom Dieck, Representations of compact Lie groups, Graduate Texts in Mathematics, vol. 98, Springer-Verlag, New York, 1985. MR 781344, DOI 10.1007/978-3-662-12918-0
- Jean-Luc Brylinski, Loop spaces, characteristic classes and geometric quantization, Progress in Mathematics, vol. 107, Birkhäuser Boston, Inc., Boston, MA, 1993. MR 1197353, DOI 10.1007/978-0-8176-4731-5
- Alain Connes, Noncommutative geometry, Academic Press, Inc., San Diego, CA, 1994. MR 1303779
- Marius Dădărlat, A suspension theorem for continuous trace $C^*$-algebras, Proc. Amer. Math. Soc. 120 (1994), no. 3, 761–769. MR 1166354, DOI 10.1090/S0002-9939-1994-1166354-3
- Pierre Deligne and Daniel S. Freed, Classical field theory, Quantum fields and strings: a course for mathematicians, Vol. 1, 2 (Princeton, NJ, 1996/1997) Amer. Math. Soc., Providence, RI, 1999, pp. 137–225. MR 1701599
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
- P. Donovan and M. Karoubi, Graded Brauer groups and $K$-theory with local coefficients, Inst. Hautes Études Sci. Publ. Math. 38 (1970), 5–25. MR 282363, DOI 10.1007/BF02684650
- Daniel S. Freed and Michael Hopkins, On Ramond-Ramond fields and $K$-theory, J. High Energy Phys. 5 (2000), Paper 44, 14. MR 1769477, DOI 10.1088/1126-6708/2000/05/044
- D. Freed and E. Witten, Anomalies in string theory with $D$-branes, E-print, hep-th/9907189.
- James Glimm and Arthur Jaffe, Quantum physics, 2nd ed., Springer-Verlag, New York, 1987. A functional integral point of view. MR 887102, DOI 10.1007/978-1-4612-4728-9
- Michel Hilsum and Georges Skandalis, Morphismes $K$-orientés d’espaces de feuilles et fonctorialité en théorie de Kasparov (d’après une conjecture d’A. Connes), Ann. Sci. École Norm. Sup. (4) 20 (1987), no. 3, 325–390 (French, with English summary). MR 925720, DOI 10.24033/asens.1537
- Lars Hörmander, The analysis of linear partial differential operators. III, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 274, Springer-Verlag, Berlin, 1994. Pseudo-differential operators; Corrected reprint of the 1985 original. MR 1313500
- J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate texts in Math. 9, Springer-Verlag, Berlin – Heidelberg – New York – Tokyo, 1972.
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842, DOI 10.1007/978-1-4612-6398-2
- Max Karoubi, Algèbres de Clifford et $K$-théorie, Ann. Sci. École Norm. Sup. (4) 1 (1968), 161–270 (French). MR 238927, DOI 10.24033/asens.1163
- Max Karoubi, $K$-theory, Grundlehren der Mathematischen Wissenschaften, Band 226, Springer-Verlag, Berlin-New York, 1978. An introduction. MR 0488029
- G. G. Kasparov, The operator $K$-functor and extensions of $C^{\ast }$-algebras, Izv. Akad. Nauk SSSR Ser. Mat. 44 (1980), no. 3, 571–636, 719 (Russian). MR 582160
- Nicolaas H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19–30. MR 179792, DOI 10.1016/0040-9383(65)90067-4
- Robert Lauter, Bertrand Monthubert, and Victor Nistor, Pseudodifferential analysis on continuous family groupoids, Doc. Math. 5 (2000), 625–655. MR 1800315
- R. Lauter and V. Nistor, Analysis of geometric operators on open manifolds: a groupoid approach, to appear.
- V. Mathai, R. B. Melrose, and I. M. Singer, The index of projective families of elliptic operators, math. DG/0206002.
- Gregory Moore and Philip Nelson, The ætiology of sigma model anomalies, Comm. Math. Phys. 100 (1985), no. 1, 83–132. MR 796163, DOI 10.1007/BF01212688
- G. Moore and E. Witten, Self-duality, Ramond-Ramond fields, and $K$-theory, E-print, hep-th/9912086.
- V. Nistor, An index theorem for gauge-invariant families: The case of solvable groups, submitted for publication.
- Victor Nistor, Higher McKean-Singer index formulae and noncommutative geometry, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 439–452. MR 1216202, DOI 10.1090/conm/145/1216202
- V. Nistor and E. Troitsky, An index theorem for gauge-invariant families: The case of compact groups (tentative title, work in progress).
- D. Kvillen, Determinants of Cauchy-Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985), no. 1, 37–41, 96 (Russian). MR 783704
- John Roe, An index theorem on open manifolds. I, II, J. Differential Geom. 27 (1988), no. 1, 87–113, 115–136. MR 918459
- Jonathan Rosenberg, The role of $K$-theory in noncommutative algebraic topology, Operator algebras and $K$-theory (San Francisco, Calif., 1981) Contemp. Math., vol. 10, Amer. Math. Soc., Providence, R.I., 1982, pp. 155–182. MR 658514
- Jonathan Rosenberg, $K$-theory of group $C^*$-algebras, foliation $C^*$-algebras, and crossed products, Index theory of elliptic operators, foliations, and operator algebras (New Orleans, LA/Indianapolis, IN, 1986) Contemp. Math., vol. 70, Amer. Math. Soc., Providence, RI, 1988, pp. 251–301. MR 948696, DOI 10.1090/conm/070/948696
- Jonathan Rosenberg, Continuous-trace algebras from the bundle theoretic point of view, J. Austral. Math. Soc. Ser. A 47 (1989), no. 3, 368–381. MR 1018964, DOI 10.1017/S1446788700033097
- Shôichirô Sakai, $C^*$-algebras and $W^*$-algebras, Classics in Mathematics, Springer-Verlag, Berlin, 1998. Reprint of the 1971 edition. MR 1490835, DOI 10.1007/978-3-642-61993-9
- Georges Skandalis, Kasparov’s bivariant $K$-theory and applications, Exposition. Math. 9 (1991), no. 3, 193–250. MR 1121156
- Evgenij V. Troitsky, “Twice” equivariant $C^*$-index theorem and the index theorem for families, Acta Appl. Math. 68 (2001), no. 1-3, 39–70, Noncommutative geometry and operator $K$-theory.
- Edward Witten, Two-dimensional gauge theories revisited, J. Geom. Phys. 9 (1992), no. 4, 303–368. MR 1185834, DOI 10.1016/0393-0440(92)90034-X
- Edward Witten, D-branes and $K$-theory, J. High Energy Phys. 12 (1998), Paper 19, 41. MR 1674715, DOI 10.1088/1126-6708/1998/12/019
- Edward Witten, Overview of $K$-theory applied to strings, Strings 2000. Proceedings of the International Superstrings Conference (Ann Arbor, MI), 2001, pp. 693–706. MR 1827946, DOI 10.1142/S0217751X01003820
Bibliographic Information
- Victor Nistor
- Affiliation: Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
- Email: nistor@math.psu.edu
- Evgenij Troitsky
- Affiliation: Department of Mechanics and Mathematics, Moscow State University, 119992 Moscow, Russia
- Email: troitsky@mech.math.msu.su
- Received by editor(s): April 22, 2002
- Published electronically: August 25, 2003
- Additional Notes: The first author was partially supported by NSF Young Investigator Award DMS-9457859 and NSF Grants DMS 991981 and 0200808
The second author was partially supported by RFFI Grant 99-01-01202 and Presidential Grant 00-15-99263. - © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 185-218
- MSC (2000): Primary 46L80
- DOI: https://doi.org/10.1090/S0002-9947-03-03370-1
- MathSciNet review: 2020029