Simple birational extensions of the polynomial algebra $\mathbb {C}^{[3]}$
HTML articles powered by AMS MathViewer
- by Shulim Kaliman, Stéphane Vénéreau and Mikhail Zaidenberg
- Trans. Amer. Math. Soc. 356 (2004), 509-555
- DOI: https://doi.org/10.1090/S0002-9947-03-03398-1
- Published electronically: September 22, 2003
- PDF | Request permission
Abstract:
The Abhyankar-Sathaye Problem asks whether any biregular embedding $\varphi :\mathbb {C}^k\hookrightarrow \mathbb {C}^n$ can be rectified, that is, whether there exists an automorphism $\alpha \in \operatorname {Aut} \mathbb {C}^n$ such that $\alpha \circ \varphi$ is a linear embedding. Here we study this problem for the embeddings $\varphi :\mathbb {C}^3\hookrightarrow \mathbb {C}^4$ whose image $X=\varphi (\mathbb {C}^3)$ is given in $\mathbb {C}^4$ by an equation $p=f(x,y)u+g(x,y,z)=0$, where $f\in \mathbb {C}[x,y]\backslash \{0\}$ and $g\in \mathbb {C}[x,y,z]$. Under certain additional assumptions we show that, indeed, the polynomial $p$ is a variable of the polynomial ring $\mathbb {C}^{[4]}=\mathbb {C}[x,y,z,u]$ (i.e., a coordinate of a polynomial automorphism of $\mathbb {C}^4$). This is an analog of a theorem due to Sathaye (1976) which concerns the case of embeddings $\mathbb {C}^2\hookrightarrow \mathbb {C}^3$. Besides, we generalize a theorem of Miyanishi (1984) giving, for a polynomial $p$ as above, a criterion for when $X=p^{-1}(0)\simeq \mathbb {C}^3$.References
- Shreeram S. Abhyankar and Tzuong Tsieng Moh, Embeddings of the line in the plane, J. Reine Angew. Math. 276 (1975), 148–166. MR 379502
- H. Bass, E. H. Connell, and D. L. Wright, Locally polynomial algebras are symmetric algebras, Invent. Math. 38 (1976/77), no. 3, 279–299. MR 432626, DOI 10.1007/BF01403135
- Albert Eagle, Series for all the roots of the equation $(z-a)^m=k(z-b)^n$, Amer. Math. Monthly 46 (1939), 425–428. MR 6, DOI 10.2307/2303037
- A. D. R. Choudary and A. Dimca, Complex hypersurfaces diffeomorphic to affine spaces, Kodai Math. J. 17 (1994), no. 2, 171–178. MR 1282208, DOI 10.2996/kmj/1138039958
- H. Derksen, Constructive Invariant Theory and the Linearization Problem, Ph.D. thesis, Basel, 1997.
- Albrecht Dold, Lectures on algebraic topology, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 200, Springer-Verlag, Berlin-New York, 1980. MR 606196
- I.V. Dolgachev, B.Ju. Veisfeiler, Unipotent group schemes over integral rings, Math. USSR, Izv. 8 (1975), 761-800.
- Eric Edo and Stéphane Vénéreau, Length 2 variables of $A[x,y]$ and transfer, Ann. Polon. Math. 76 (2001), no. 1-2, 67–76. Polynomial automorphisms and related topics (Kraków, 1999). MR 1839860, DOI 10.4064/ap76-1-6
- A. T. Fomenko and D. B. Fuks, Kurs gomotopicheskoĭ topologii, “Nauka”, Moscow, 1989 (Russian). With an English summary. MR 1027592
- Takao Fujita, On the topology of noncomplete algebraic surfaces, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 29 (1982), no. 3, 503–566. MR 687591
- D. B. Fuks, O. Ya. Viro, Homology and cohomology, in: Encyclopedia of Math. Sci. Vol. 24, Topology-2, VINITI, Moscow, 1988, 123-245 (in Russian).
- M. Gizatullin, On affine surfaces that can be completed by a nonsingular rational curve, Math. USSR, Izv. 4 (1970), 787-810.
- Shulim Kaliman, Exotic analytic structures and Eisenman intrinsic measures, Israel J. Math. 88 (1994), no. 1-3, 411–423. MR 1303505, DOI 10.1007/BF02937521
- Sh. Kaliman, Polynomials with general $\mathbf C^2$-fibers are variables, Pacific J. Math. 203 (2002), no. 1, 161–190. MR 1895930, DOI 10.2140/pjm.2002.203.161
- Shulim Kaliman and Leonid Makar-Limanov, On the Russell-Koras contractible threefolds, J. Algebraic Geom. 6 (1997), no. 2, 247–268. MR 1489115
- S. Kaliman, L. Makar-Limanov, Locally nilpotent derivations of Jacobian type, Preprint, 1998, 16pp.
- S. Kaliman, S. Vénéreau, M. Zaidenberg, Extensions birationnelles simples de l’anneau de polynômes $\mathbb {C}^3$, C. R. Acad. Sci. Paris Sér. I Math. 333:4 (2001), 319–322.
- S. Kaliman, S. Vénéreau, M. Zaidenberg, Simple birational extensions of the polynomial ring $\mathbb {C}^{[3]}$, preprint, Institut Fourier des mathématiques, 532; E-print math.AG/0104204 (2001), 49pp.
- Sh. Kaliman and M. Zaidenberg, Affine modifications and affine hypersurfaces with a very transitive automorphism group, Transform. Groups 4 (1999), no. 1, 53–95. MR 1669174, DOI 10.1007/BF01236662
- Shulim Kaliman and Mikhail Zaidenberg, Families of affine planes: the existence of a cylinder, Michigan Math. J. 49 (2001), no. 2, 353–367. MR 1852308, DOI 10.1307/mmj/1008719778
- S. Kaliman and M. Zaidenberg, Miyanishi’s characterization of the affine 3-space does not hold in higher dimensions, Ann. Inst. Fourier (Grenoble) 50 (2000), no. 6, 1649–1669 (2001). MR 1817379, DOI 10.5802/aif.1803
- V.Ya. Lin, M.G. Zaidenberg, Finiteness theorems for holomorphic mappings, Encyclopedia of Math. Sci. Vol. 9. Several Complex Variables III. Berlin, Heidelberg, New York: Springer Verlag, 1989, 113–172.
- L. Makar-Limanov, On the hypersurface $x+x^2y+z^2+t^3=0$ in $\textbf {C}^4$ or a $\textbf {C}^3$-like threefold which is not $\textbf {C}^3$. part B, Israel J. Math. 96 (1996), no. part B, 419–429. MR 1433698, DOI 10.1007/BF02937314
- L. Makar-Limanov, Again $x + x^2y + z^2 + t^3 = 0$, Preprint, 1998, 3p.
- L. Makar-Limanov, Locally nilpotent derivations of affine domains, Abstract in: Affine Algebraic Geometry 14.05-20.05.2000, Mathematisches Forschungsinstitut Oberwolfach, Tagungsbericht 21/2000, p. 11.
- William S. Massey, Singular homology theory, Graduate Texts in Mathematics, vol. 70, Springer-Verlag, New York-Berlin, 1980. MR 569059, DOI 10.1007/978-1-4684-9231-6
- C.R.F. Maunder, Algebraic topology, The New University Mathematics Series. Van Nostrand Reinhold Company Ltd., London, 1970.
- Masayoshi Miyanishi, An algebro-topological characterization of the affine space of dimension three, Amer. J. Math. 106 (1984), no. 6, 1469–1485. MR 765587, DOI 10.2307/2374401
- Masayoshi Miyanishi, Algebraic characterizations of the affine $3$-space, Algebraic Geometry Seminar (Singapore, 1987) World Sci. Publishing, Singapore, 1988, pp. 53–67. MR 966444
- Masayoshi Miyanishi, Open algebraic surfaces, CRM Monograph Series, vol. 12, American Mathematical Society, Providence, RI, 2001. MR 1800276, DOI 10.1090/crmm/012
- Rudolf Rentschler, Opérations du groupe additif sur le plan affine, C. R. Acad. Sci. Paris Sér. A-B 267 (1968), A384–A387 (French). MR 232770
- Peter Russell, Simple birational extensions of two dimensional affine rational domains, Compositio Math. 33 (1976), no. 2, 197–208. MR 429935
- Peter Russell and Avinash Sathaye, On finding and cancelling variables in $k[X,\,Y,\,Z]$, J. Algebra 57 (1979), no. 1, 151–166. MR 533106, DOI 10.1016/0021-8693(79)90214-X
- Avinash Sathaye, On linear planes, Proc. Amer. Math. Soc. 56 (1976), 1–7. MR 409472, DOI 10.1090/S0002-9939-1976-0409472-6
- A. Sathaye, Polynomial ring in two variables over a DVR: a criterion, Invent. Math. 74 (1983), no. 1, 159–168. MR 722731, DOI 10.1007/BF01388536
- Vladimir Shpilrain and Jie-Tai Yu, Embeddings of hypersurfaces in affine spaces, J. Algebra 239 (2001), no. 1, 161–173. MR 1827879, DOI 10.1006/jabr.2000.8677
- Vladimir Shpilrain and Jie-Tai Yu, Embeddings of curves in the plane, J. Algebra 217 (1999), no. 2, 668–678. MR 1700520, DOI 10.1006/jabr.1998.7811
- Masakazu Suzuki, Propriétés topologiques des polynômes de deux variables complexes, et automorphismes algébriques de l’espace $\textbf {C}^{2}$, J. Math. Soc. Japan 26 (1974), 241–257 (French). MR 338423, DOI 10.2969/jmsj/02620241
- S. Vénéreau, Quelques automorphismes et variables de $A[x,y]$, preprint, Institut Fourier des mathématiques, 460 (1999), 10pp.
- Raymond Louis Wilder, Topology of manifolds, American Mathematical Society Colloquium Publications, Vol. 32, American Mathematical Society, Providence, R.I., 1979. Reprint of 1963 edition. MR 598636
- David Wright, Cancellation of variables of the form $bT^{n}-a$, J. Algebra 52 (1978), no. 1, 94–100. MR 480550, DOI 10.1016/0021-8693(78)90263-6
- M. G. Zaĭdenberg, Isotrivial families of curves on affine surfaces, and the characterization of the affine plane, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 534–567, 688 (Russian); English transl., Math. USSR-Izv. 30 (1988), no. 3, 503–532. MR 903623, DOI 10.1070/IM1988v030n03ABEH001027
- M. Zaĭdenberg, Exotic algebraic structures on affine spaces, Algebra i Analiz 11 (1999), no. 5, 3–73 (Russian); English transl., St. Petersburg Math. J. 11 (2000), no. 5, 703–760. MR 1734345
Bibliographic Information
- Shulim Kaliman
- Affiliation: Department of Mathematics, University of Miami, Coral Gables, Florida 33124
- MR Author ID: 97125
- Email: kaliman@math.miami.edu
- Stéphane Vénéreau
- Affiliation: Université Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF, BP 74, 38402 St. Martin d’Hères cédex, France
- Email: venereau@math.mcgill.ca
- Mikhail Zaidenberg
- Affiliation: Université Grenoble I, Institut Fourier, UMR 5582 CNRS-UJF, BP 74, 38402 St. Martin d’Hères cédex, France
- MR Author ID: 196553
- Email: zaidenbe@ujf-grenoble.fr
- Received by editor(s): December 5, 2001
- Published electronically: September 22, 2003
- Additional Notes: The research of the first author was partially supported by the NSA grant MDA904-00-1-0016
The third author is grateful to the IHES and to the MPI at Bonn (where a part of the work was done) for their hospitality and excellent working conditions - © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 509-555
- MSC (2000): Primary 14R10, 14R25
- DOI: https://doi.org/10.1090/S0002-9947-03-03398-1
- MathSciNet review: 2022709