A version of Gordon’s theorem for multi-dimensional Schrödinger operators
HTML articles powered by AMS MathViewer
- by David Damanik
- Trans. Amer. Math. Soc. 356 (2004), 495-507
- DOI: https://doi.org/10.1090/S0002-9947-03-03442-1
- Published electronically: September 22, 2003
- PDF | Request permission
Abstract:
We consider discrete Schrödinger operators $H = \Delta + V$ in $\ell ^2(\mathbb {Z}^d)$ with $d \ge 1$, and study the eigenvalue problem for these operators. It is shown that the point spectrum is empty if the potential $V$ is sufficiently well approximated by periodic potentials. This criterion is applied to quasiperiodic $V$ and to so-called Fibonacci-type superlattices.References
- Joseph Avron and Barry Simon, Singular continuous spectrum for a class of almost periodic Jacobi matrices, Bull. Amer. Math. Soc. (N.S.) 6 (1982), no. 1, 81–85. MR 634437, DOI 10.1090/S0273-0979-1982-14971-0
- J. Bourgain and M. Goldstein, On nonperturbative localization with quasi-periodic potential, Ann. of Math. (2) 152 (2000), no. 3, 835–879. MR 1815703, DOI 10.2307/2661356
- J. Bourgain, M. Goldstein, and W. Schlag, Anderson localization for Schrödinger operators on $\mathbb {Z}^2$ with quasi-periodic potential, Acta Math. 188 (2002), 41–86
- J. Bourgain and S. Jitomirskaya, Anderson localization for the band model, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1745, Springer, Berlin, 2000, pp. 67–79. MR 1796713, DOI 10.1007/BFb0107208
- René Carmona and Jean Lacroix, Spectral theory of random Schrödinger operators, Probability and its Applications, Birkhäuser Boston, Inc., Boston, MA, 1990. MR 1102675, DOI 10.1007/978-1-4612-4488-2
- H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Springer Study Edition, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987. MR 883643, DOI 10.1007/978-3-540-77522-5
- David Damanik, Singular continuous spectrum for a class of substitution Hamiltonians, Lett. Math. Phys. 46 (1998), no. 4, 303–311. MR 1668569, DOI 10.1023/A:1007510721504
- David Damanik, Gordon-type arguments in the spectral theory of one-dimensional quasicrystals, Directions in mathematical quasicrystals, CRM Monogr. Ser., vol. 13, Amer. Math. Soc., Providence, RI, 2000, pp. 277–305. MR 1798997
- David Damanik, Absence of eigenvalues for a class of Schrödinger operators on the strip, Forum Math. 14 (2002), no. 5, 797–806. MR 1924778, DOI 10.1515/form.2002.034
- E. B. Davies and B. Simon, Scattering theory for systems with different spatial asymptotics on the left and right, Comm. Math. Phys. 63 (1978), no. 3, 277–301. MR 513906, DOI 10.1007/BF01196937
- François Delyon and Dimitri Petritis, Absence of localization in a class of Schrödinger operators with quasiperiodic potential, Comm. Math. Phys. 103 (1986), no. 3, 441–444. MR 832920, DOI 10.1007/BF01211759
- A. Ja. Gordon, The point spectrum of the one-dimensional Schrödinger operator, Uspehi Mat. Nauk 31 (1976), no. 4(190), 257–258 (Russian). MR 0458247
- A. Ya. Gordon, A sufficient condition for continuity of the spectrum of a discrete Schrödinger operator, Funktsional. Anal. i Prilozhen. 20 (1986), no. 4, 70–71 (Russian). MR 878048
- Svetlana Ya. Jitomirskaya, Metal-insulator transition for the almost Mathieu operator, Ann. of Math. (2) 150 (1999), no. 3, 1159–1175. MR 1740982, DOI 10.2307/121066
- Masahiro Kaminaga, Absence of point spectrum for a class of discrete Schrödinger operators with quasiperiodic potential, Forum Math. 8 (1996), no. 1, 63–69. MR 1366534, DOI 10.1515/form.1996.8.63
- A. Ya. Khinchin, Continued fractions, Translated from the third (1961) Russian edition, Dover Publications, Inc., Mineola, NY, 1997. With a preface by B. V. Gnedenko; Reprint of the 1964 translation. MR 1451873
- Abel Klein, Jean Lacroix, and Athanasios Speis, Localization for the Anderson model on a strip with singular potentials, J. Funct. Anal. 94 (1990), no. 1, 135–155. MR 1077548, DOI 10.1016/0022-1236(90)90031-F
- Shinichi Kotani, Ljapunov indices determine absolutely continuous spectra of stationary random one-dimensional Schrödinger operators, Stochastic analysis (Katata/Kyoto, 1982) North-Holland Math. Library, vol. 32, North-Holland, Amsterdam, 1984, pp. 225–247. MR 780760, DOI 10.1016/S0924-6509(08)70395-7
- Shinichi Kotani, Jacobi matrices with random potentials taking finitely many values, Rev. Math. Phys. 1 (1989), no. 1, 129–133. MR 1041533, DOI 10.1142/S0129055X89000067
- S. Kotani and B. Simon, Stochastic Schrödinger operators and Jacobi matrices on the strip, Comm. Math. Phys. 119 (1988), no. 3, 403–429. MR 969209, DOI 10.1007/BF01218080
- Martine Queffélec, Substitution dynamical systems—spectral analysis, Lecture Notes in Mathematics, vol. 1294, Springer-Verlag, Berlin, 1987. MR 924156, DOI 10.1007/BFb0081890
Bibliographic Information
- David Damanik
- Affiliation: Department of Mathematics 253–37, California Institute of Technology, Pasadena, California 91125
- MR Author ID: 621621
- Email: damanik@its.caltech.edu
- Received by editor(s): October 9, 2001
- Published electronically: September 22, 2003
- Additional Notes: This research was partially supported by NSF grant DMS–0010101
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 495-507
- MSC (2000): Primary 81Q10, 47B39
- DOI: https://doi.org/10.1090/S0002-9947-03-03442-1
- MathSciNet review: 2022708