On the Weyl tensor of a self-dual complex 4-manifold
HTML articles powered by AMS MathViewer
- by Florin Alexandru Belgun
- Trans. Amer. Math. Soc. 356 (2004), 853-880
- DOI: https://doi.org/10.1090/S0002-9947-03-03157-X
- Published electronically: October 21, 2003
- PDF | Request permission
Abstract:
We study complex 4-manifolds with holomorphic self-dual conformal structures, and we obtain an interpretation of the Weyl tensor of such a manifold as the projective curvature of a field of cones on the ambitwistor space. In particular, its vanishing is implied by the existence of some compact, simply-connected, null-geodesics. We also show that the projective structure of the $\beta$-surfaces of a self-dual manifold is flat. All these results are illustrated in detail in the case of the complexification of $\mathbb {CP}^2$.References
- M. F. Atiyah, N. J. Hitchin, and I. M. Singer, Self-duality in four-dimensional Riemannian geometry, Proc. Roy. Soc. London Ser. A 362 (1978), no. 1711, 425–461. MR 506229, DOI 10.1098/rspa.1978.0143
- Florin Alexandru Belgun, Null-geodesics in complex conformal manifolds and the LeBrun correspondence, J. Reine Angew. Math. 536 (2001), 43–63. MR 1837426, DOI 10.1515/crll.2001.052
- Arthur L. Besse, Einstein manifolds, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 10, Springer-Verlag, Berlin, 1987. MR 867684, DOI 10.1007/978-3-540-74311-8
- F. Campana, On twistor spaces of the class $\scr C$, J. Differential Geom. 33 (1991), no. 2, 541–549. MR 1094468, DOI 10.4310/jdg/1214446329
- P. Gauduchon, Connexion canonique et structures de Weyl en géométrie conforme, Preprint, juin 1990.
- N. J. Hitchin, Complex manifolds and Einstein’s equations, Twistor geometry and nonlinear systems (Primorsko, 1980) Lecture Notes in Math., vol. 970, Springer, Berlin-New York, 1982, pp. 73–99. MR 699802
- Bruno Klingler, Structures affines et projectives sur les surfaces complexes, Ann. Inst. Fourier (Grenoble) 48 (1998), no. 2, 441–477 (French). MR 1625606, DOI 10.5802/aif.1625
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974
- Shoshichi Kobayashi and Takushiro Ochiai, Holomorphic projective structures on compact complex surfaces, Math. Ann. 249 (1980), no. 1, 75–94. MR 575449, DOI 10.1007/BF01387081
- K. Kodaira, A theorem of completeness of characteristic systems for analytic families of compact submanifolds of complex manifolds, Ann. of Math. (2) 75 (1962), 146–162. MR 133841, DOI 10.2307/1970424
- A. Gloden, Sur la résolution en nombres entiers du système $A^{kx}+B^{kx}+C^{kx}+D^{kx}=E^x+F^x+G^x+H^x$ ($x=1$, $2$ et $3$), Bol. Mat. 12 (1939), 118–122 (French). MR 24
- C. R. LeBrun, ${\cal H}$-space with a cosmological constant, Proc. Roy. Soc. London Ser. A 380 (1982), no. 1778, 171–185. MR 652038, DOI 10.1098/rspa.1982.0035
- C. R. LeBrun, Twistors, ambitwistors, and conformal gravity, Twistors in mathematics and physics, London Math. Soc. Lecture Note Ser., vol. 156, Cambridge Univ. Press, Cambridge, 1990, pp. 71–86. MR 1089910
- Claude LeBrun, Foliated CR manifolds, J. Differential Geom. 22 (1985), no. 1, 81–96. MR 826425
- Claude LeBrun, Spaces of complex null geodesics in complex-Riemannian geometry, Trans. Amer. Math. Soc. 278 (1983), no. 1, 209–231. MR 697071, DOI 10.1090/S0002-9947-1983-0697071-9
- John A. Wheeler (ed.), Battelle rencontres. 1967 lectures in mathematics and physics, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0232631
- Roger Penrose, Nonlinear gravitons and curved twistor theory, Gen. Relativity Gravitation 7 (1976), no. 1, 31–52. MR 439004, DOI 10.1007/bf00762011
- Simon Salamon, Topics in four-dimensional Riemannian geometry, Geometry seminar “Luigi Bianchi” (Pisa, 1982) Lecture Notes in Math., vol. 1022, Springer, Berlin, 1983, pp. 33–124. MR 728393, DOI 10.1007/BFb0071601
- I. M. Singer and J. A. Thorpe, The curvature of $4$-dimensional Einstein spaces, Global Analysis (Papers in Honor of K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 355–365. MR 0256303
- T.Y. Thomas, A projective theory of affinely connected manifolds, Math. Zeit. 25 (1926), 723-733.
- J.H.C. Whitehead, Convex regions in the geometry of paths, Quart. J. Math. 3 (1932), 33-42.
Bibliographic Information
- Florin Alexandru Belgun
- Affiliation: Centre de Mathématiques, UMR 7640 CNRS, Ecole Polytechnique, 91128 Palaiseau cedex, France
- Address at time of publication: Mathematisches Institut, Augustusplatz 10/11, 04109 Leipzig, Germany
- Email: belgun@math.polytechnique.fr, Florin.Belgun@math.uni-leipzig.de
- Received by editor(s): February 27, 2000
- Published electronically: October 21, 2003
- © Copyright 2003 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 356 (2004), 853-880
- MSC (2000): Primary 53C21, 53A30, 32Qxx
- DOI: https://doi.org/10.1090/S0002-9947-03-03157-X
- MathSciNet review: 1984459